DOI QR코드

DOI QR Code

Potential side-NSM strengthening approach to enhance the flexural performance of RC beams: Experimental, numerical and analytical investigations

  • Md. Akter, Hosen (Department of Civil and Environmental Engineering, College of Engineering, Dhofar University) ;
  • Mohd Zamin, Jumaat (Department of Civil Engineering, Faculty of Engineering, University of Malaya) ;
  • A.B.M. Saiful, Islam (Department of Civil & Construction Engineering, Imam Abdulrahman Bin Faisal University) ;
  • Khalid Ahmed, Al Kaaf (Department of Civil and Environmental Engineering, College of Engineering, Dhofar University) ;
  • Mahaad Issa, Shammas (Department of Civil and Environmental Engineering, College of Engineering, Dhofar University) ;
  • Ibrahim Y., Hakeem (Civil Engineering Department, Najran University) ;
  • Mohammad Momeen, Ul Islam (Discipline of Civil and Infrastructure Engineering, School of Engineering, RMIT University)
  • 투고 : 2021.06.25
  • 심사 : 2022.12.14
  • 발행 : 2023.01.25

초록

The performance of reinforced concrete (RC) beam specimens strengthened using a newly proposed Side Near Surface Mounted (S-NSM) technology was investigated experimentally in this work. In addition, analytical and nonlinear finite element (FE) modeling was exploited to forecast the performance of RC members reinforced with S-NSM utilizing steel bars. Five (one control and four strengthened) RC beams were evaluated for flexural performance under static loading conditions employing four-point bending loads. Experimental variables comprise different S-NSM reinforcement ratios. The constitutive models were applied for simulating the non-linear material characteristics of used concrete, major, and strengthening reinforcements. The failure load and mode, yield and ultimate strengths, deflection, strain, cracking behavior as well as ductility of the beams were evaluated and discussed. To cope with the flexural behavior of the tested beams, a 3D non-linear FE model was simulated. In parametric investigations, the influence of S-NSM reinforcement, the efficacy of the S-NSM procedure, and the structural response ductility are examined. The experimental, numerical, and analytical outcomes show good agreement. The results revealed a significant increase in yield and ultimate strengths as well as improved failure modes.

키워드

과제정보

The authors warmly acknowledge the University of Malaya High Impact Research Grant D000036-16001 for its financial support.

참고문헌

  1. Akbarzadeh, H. and Maghsoudi, A.A. (2010), "Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer", Mater. Des., 31(3), 1130-1147. http://doi.org/10.1016/j.matdes.2009.09.041.
  2. Al-Mahmoud, F., Castel, A., Francois, R. and Tourneur, C. (2009), "Strengthening of RC members with near-surface mounted CFRP rods", Compos. Struct., 91(2), 138-147. https://doi.org/10.1016/j.compstruct.2009.04.040
  3. Al-Mahmoud, F., Castel, A., Francois, R. and Tourneur, C. (2010), "RC beams strengthened with NSM CFRP rods and modeling of peeling-off failure", Compos. Struct.,92(8), 1920-1930. https://doi.org/10.1016/j.compstruct.2010.01.002
  4. Almusallam, T.H., Elsanadedy, H.M., Al-Salloum, Y.A. and Alsayed, S.H. (2013), "Experimental and numerical investigation for the flexural strengthening of RC beams using near-surface mounted steel or GFRP bars", Constr. Build. Mater., 40, 145-161. https://doi.org/10.1016/j.conbuildmat.2012.09.107
  5. Arduini, M., Di Tommaso, A. and Nanni, A. (1997), "Brittle failure in FRP plate and sheet bonded beams", ACI Struct. J., 94(4).
  6. Arduini, M. and Nanni, A. (1997), "Behavior of precracked RC beams strengthened with carbon FRP sheets", J. Compos Constr., 1(2), 63-70. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(63)
  7. Ashour, A., El-Refaie, S. and Garrity, S. (2004), "Flexural strengthening of RC continuous beams using CFRP laminates", Cement Concrete Compos., 26(7), 765-775. https://doi.org/10.1016/j.cemconcomp.2003.07.002
  8. Bilotta, A., Ceroni, F., Di Ludovico, M., Nigro, E., Pecce, M. and Manfredi, G. (2011), "Bond efficiency of EBR and NSM FRP systems for strengthening concrete members", J. Compos Constr., 15(5), 757-772. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000204
  9. Committee, A. (2011a), "Building code requirements for structural concrete (318-11) and commentary-(318R-11)", American Concrete Institute, Detroit, Michigan.
  10. Committee, A. (2011b), "Building code requirements for structural concrete (318-11) and commentary-(318R-11)", American Concrete Institute, Detroit, Michigan.
  11. Dar, M.A., Subramanian, N., Pande, S., Dar, A. and Raju, J. (2020), "Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments", Struct. Eng. Mech., 74(2), 243-254. https://doi.org/10.12989/sem.2020.74.2.243
  12. De Lorenzis, L., Nanni, A. and La Tegola, A. (2000). "Strengthening of reinforced concrete structures with near surface mounted FRP rods", Proceedings of the International Meeting on Composite Materials, PLAST 2000, Advancing with Composites, May.
  13. De Lorenzis, L., Rizzo, A. and La Tegola, A. (2002), "A modified pull-out test for bond of near-surface mounted FRP rods in concrete", Compos. Part B: Eng., 33(8), 589-603. https://doi.org/10.1016/S1359-8368(02)00052-5
  14. De Lorenzis, L. and Teng, J. (2007), "Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures", Compos. Part B: Eng., 38(2), 119-143. https://doi.org/10.1016/j.compositesb.2006.08.003
  15. Dere, Y. and Koroglu, M.A. (2017), "Nonlinear FE modeling of reinforced concrete", Int. J. Struct. Civil Eng. Res., 6(1), 71-74. https://doi.org/10.18178/ijscer.6.1.71-74
  16. Desayi, P. and Krishnan, S. (1964), "Equation for the stress-strain curve of concrete", J. Proc., 61(3), 345-350.
  17. El-Hacha, R. and Rizkalla, S.H. (2004), "Near-surface-mounted fiber-reinforced polymer reinforcements for flexural strengthening of concrete structures", ACI Struct. J., 101(5), 717-726.
  18. El-Mihilmy, M.T. and Tedesco, J.W. (2000a), "Analysis of reinforced concrete beams strengthened with FRP laminates", J. Struct. Eng., 126(6), 684-691. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:6(684)
  19. El-Mihilmy, M.T. and Tedesco, J.W. (2000b), "Deflection of reinforced concrete beams strengthened with fiber-reinforced polymer (FRP) plates", ACI Struct. J., 97(5), 679-688. https://doi.org/10.14359/8803
  20. Galati, D. and De Lorenzis, L. (2009), "Effect of construction details on the bond performance of NSM FRP bars in concrete", Adv. Struct. Eng., 12(5), 683-700. https://doi.org/10.1260/136943309789867836
  21. GangaRao, H.V., Taly, N. and Vijay, P. (2006). Reinforced Concrete Design with FRP Composites, CRC Press.
  22. Hawileh, R.A., Rasheed, H.A., Abdalla, J.A. and Al-Tamimi, A.K. (2014), "Behavior of reinforced concrete beams strengthened with externally bonded hybrid fiber reinforced polymer systems", Mater. Des., 53, 972-982. https://doi.org/10.1016/j.matdes.2013.07.087
  23. Hibbitt, K. (2007). ABAQUS Version 6. 7: Theory Manual, Users' Manual, Verification Man Ual and Example Problems Manual, Hibbitt, Karlson and Sorenson Inc.
  24. Hildebrand, M. (1994), "Non-linear analysis and optimization of adhesively bonded single lap joints between fibre-reinforced plastics and metals", Int. J. Adhes. Adhes., 14(4), 261-267. https://doi.org/10.1016/0143-7496(94)90039-6
  25. Hosen, M., Althoey, F., Jumaat, M. Z., Alengaram, U. J. and Sulong, N. (2021), "Flexural performance of RC beams strengthened with externally-side bonded reinforcement (E-SBR) technique using CFRP composites", Mater., 14(11), 2809. https://doi.org/10.3390/ma14112809
  26. Hosen, M., Jumaat, M.Z., Alengaram, U.J., Islam, A.B.M.S. and Bin Hashim, H. (2016a), "Near surface mounted composites for flexural strengthening of reinforced concrete beams", Polym., 8(3), 67. https://doi.org/10.3390/polym8030067
  27. Hosen, M.A., Jumaat, M.Z. and Islam, A.B.M.S. (2015), "Inclusion of CFRP-epoxy composite for end anchorage in NSM-Epoxy strengthened beams", Adv. Mater. Sci. Eng., 2015, Article ID 812797. https://doi.org/10.1155/2015/812797.
  28. Hosen, M.A., Jumaat, M.Z., Islam, A.B.M.S., Darain, K. and Rahman, M. (2016b), "Flexural performance of reinforced concrete beams strengthened by a new side near-surface mounted technique using carbon fibre-reinforced polymer bars: Experimental and analytical investigation", Sci. Adv. Mater., 8(4), 726-740. https://doi.org/10.1166/sam.2016.2656
  29. Hsieh, S., Ting, E. and Chen, W. (1982), "A plastic-fracture model for concrete", Int. J. Solid. Struct., 18(3), 181-197. https://doi.org/10.1016/0020-7683(82)90001-4
  30. Hu, H.T., Lin, F.M. and Jan, Y.Y. (2004), "Nonlinear finite element analysis of reinforced concrete beams strengthened by fiber-reinforced plastics", Compos. Struct., 63(3), 271-281. https://doi.org/10.1016/S0263-8223(03)00174-0
  31. Hu, H.T. and Schnobrich, W.C. (1989), "Constitutive modeling of concrete by using nonassociated plasticity", J. Mater. Civil Eng., 1(4), 199-216. https://doi.org/10.1061/(ASCE)0899-1561(1989)1:4(199)
  32. Institution, B.S. (2004), 1-1. Eurocode 2: Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings, British Standards Institution, London.
  33. Islam, A.B.M.S. (2022), "Fatigue performance evaluation of reinforced concrete element: Efficient numerical and SWOT analysis", Comput. Concrete, 30(4), 277-287. https://doi.org/10.12989/cac.2022.30.4.277
  34. Jumaat, M.Z. and Alam, M.A. (2008), "Behaviour of U and L shaped end anchored steel plate strengthened reinforced concrete beams", Eur. J. Scientif. Res., 22(2), 184-196.
  35. Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", J. Proc., 66(8), 656-666.
  36. Cuong-Le, T., Le-Minh, H. and Sang-To, T. (2022), "A nonlinear concrete damaged plasticity model for simulation reinforced concrete structures using ABAQUS", Frattura ed Integrita Strutturale, 16(59), 232-242.
  37. Lorenzis, L.D. and Nanni, A. (2001), "Characterization of FRP rods as near-surface mounted reinforcement", J. Compos. Constr., 5(2), 114-121. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:2(114)
  38. Lu, J., Chan, H., Chen, A. and Kou, H. (2011), "Mechanics of high strength and high ductility materials", Procedia Eng., 10, 2202-2207. https://doi.org/10.1016/j.proeng.2011.04.364
  39. Massicotte, B., Elwi, A. E. and MacGregor, J. G. (1990), "Tension-stiffening model for planar reinforced concrete members", J. Struct. Eng., 116(11), 3039-3058. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3039)
  40. Nilson, A.H. (1982), "State-of-the-art report on finite element analysis of reinforced concrete", American Society of Civil Engineers: Task Committee on Finite Element Analysis of Reinforced Concrete Structures of the Structural Division Committee on Concrete and Masonry Structures, New York, NY
  41. Novidis, D., Pantazopoulou, S. and Tentolouris, E. (2007), "Experimental study of bond of NSM-FRP reinforcement", Constr. Build. Mater., 21(8), 1760-1770. https://doi.org/10.1016/j.conbuildmat.2006.05.054
  42. Oudah, F. and El-Hacha, R. (2012), "A new ductility model of reinforced concrete beams strengthened using fiber reinforced polymer reinforcement", Compos. Part B: Eng., 43(8), 3338-3347. https://doi.org/10.1016/j.compositesb.2012.01.071
  43. Rafiee, A. (2020), "Minimum cost strengthening of existing masonry arch railway bridges", Struct. Eng. Mech., 75(2), 271-282. https://doi.org/10.12989/SEM.2020.75.2.271
  44. Rahal, K. N. and Rumaih, H. A. (2011), "Tests on reinforced concrete beams strengthened in shear using near surface mounted CFRP and steel bars", Engineering Structures, 33(1), 53-62. https://doi.org/10.1016/j.engstruct.2010.09.017
  45. Rahimi, H. and Hutchinson, A. (2001), "Concrete beams strengthened with externally bonded FRP plates", Journal of Composites for Construction, 5(1), 44-56. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(44)
  46. Rahmdel, J. M., Vahid-Vahdattalab, F., Shafei, E. and Zirakian, T. (2021), "Seismic response assessment of high-strength concrete frames strengthened with carbon fiber reinforced polymers", Struct. Eng. Mech., 77(6), 735-744. https://doi.org/10.12989/SEM.2021.77.6.735
  47. Ramana, V., Kant, T., Morton, S., Dutta, P., Mukherjee, A. and Desai, Y. (2000), "Behavior of CFRPC strengthened reinforced concrete beams with varying degrees of strengthening", Composites Part B: Engineering, 31(6), 461-470. https://doi.org/10.1016/S1359-8368(00)00022-6
  48. Rosenboom, O. and Rizkalla, S. (2006), "Behavior of prestressed concrete strengthened with various CFRP systems subjected to fatigue loading", Journal of Composites for Construction, 10(6), 492-502. https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(492)
  49. Shan, Z. and Su, R. (2021), "Axial strengthening of RC columns by direct fastening of steel plates", Struct. Eng. Mech., 77(6), 705-720. https://doi.org/10.12989/SEM.2021.77.6.705
  50. Sharaky, I., Torres, L., Baena, M. and Mias, C. (2013a), "An experimental study of different factors affecting the bond of NSM FRP bars in concrete", Composite Structures, 99, 350-365. https://doi.org/10.1016/j.compstruct.2012.12.014
  51. Sharaky, I., Torres, L., Baena, M. and Vilanova, I. (2013b), "Effect of different material and construction details on the bond behaviour of NSM FRP bars in concrete", Constr. Build. Mater., 38, 890-902. https://doi.org/10.1016/j.conbuildmat.2012.09.015
  52. Sharaky, I., Torres, L., Comas, J. and Barris, C. (2014), "Flexural response of reinforced concrete (RC) beams strengthened with near surface mounted (NSM) fibre reinforced polymer (FRP) bars", Composite Structures, 109, 8-22. https://doi.org/10.1016/j.compstruct.2013.10.051
  53. Sharif, A., Al-Sulaimani, G., Basunbul, I., Baluch, M. and Ghaleb, B. (1994), "Strengthening of initially loaded reinforced concrete beams using FRP plates", ACI Structural Journal, 91(2).
  54. Soliman, S. M., El-Salakawy, E. and Benmokrane, B. (2010), "Bond performance of near-surface-mounted FRP bars", Journal of Composites for Construction, 15(1), 103-111. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000150
  55. Tahar, H. D., Tayeb, B., Abderezak, R. and Tounsi, A. (2021), "New approach of composite wooden beam-reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling", Struct. Eng. Mech., 78(3), 319.
  56. Tang, W., Balendran, R., Nadeem, A. and Leung, H. (2006), "Flexural strengthening of reinforced lightweight polystyrene aggregate concrete beams with near-surface mounted GFRP bars", Building and environment, 41(10), 1381-1393. https://doi.org/10.1016/j.buildenv.2005.05.029
  57. Thanoon, W. A., Jaafar, M., Kadir, M. R. A. and Noorzaei, J. (2005), "Repair and structural performance of initially cracked reinforced concrete slabs", Constr. Build. Mater., 19(8), 595-603. https://doi.org/10.1016/j.conbuildmat.2005.01.011
  58. Toutanji, H., Zhao, L. and Zhang, Y. (2006), "Flexural behavior of reinforced concrete beams externally strengthened with CFRP sheets bonded with an inorganic matrix", Engineering Structures, 28(4), 557-566. https://doi.org/10.1016/j.engstruct.2005.09.011
  59. Wahalathantri, B., Thambiratnam, D., Chan, T. and Fawzia, S. (2011). A material model for flexural crack simulation in reinforced concrete elements using ABAQUS. Paper presented at the Proceedings of the first international conference on engineering, designing and developing the built environment for sustainable wellbeing.
  60. Wu, Z. and Hemdan, S. (2005). Debonding in FRP-strengthened flexural members with different shear-span ratios. Paper presented at the Proceeding of the 7th International Symposium on Fiber Reinforced Composite Reinforcement for Concrete Structures.
  61. Yun, H.-D., Hwang, J.-H., Kim, M.-Y., Choi, S.-H., Park, W.-S. and Kim, K. S. (2020), "Seismic performance of RC frame structures strengthened by HPFRCC walls", Struct. Eng. Mech., 75(3), 389-399. https://doi.org/10.12989/sem.2020.75.3.389
  62. Zhou, Y., Gou, M., Zhang, F., Zhang, S. and Wang, D. (2013), "Reinforced concrete beams strengthened with carbon fiber reinforced polymer by friction hybrid bond technique: Experimental investigation", Materials & Design, 50, 130-139. https://doi.org/10.1016/j.matdes.2013.02.089