DOI QR코드

DOI QR Code

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari (Faculty of Mechanical Engineering, University of Guilan) ;
  • Ramtin, Hassani (Faculty of Mechanical Engineering, University of Guilan) ;
  • Yousef, Gholami (Faculty of Mechanical Engineering, University of Guilan) ;
  • Hessam, Rouhi (Department of Engineering Science, Faculty of Technology and Engineering, East of Guilan, University of Guilan)
  • Received : 2021.05.20
  • Accepted : 2022.12.02
  • Published : 2023.01.25

Abstract

Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

Keywords

References

  1. Ansari, R., Gholami, R. and Rouhi, H. (2019a), "Geometrically nonlinear free vibration analysis of shear deformable magneto-electro-elastic plates considering thermal effects based on a novel variational approach", Thin Wall. Struct., 135, 12-20. https://doi.org/10.1016/j.tws.2018.10.033.
  2. Ansari, R., Hasrati, E., Shakouri, A.H., Bazdid-Vahdati, M. and Rouhi, H. (2018), "Nonlinear large deformation analysis of shells using the variational differential quadrature method based on the six-parameter shell theory", Int. J. Nonlin. Mech., 106, 130-143. https://doi.org/10.1016/j.ijnonlinmec.2018.08.007.
  3. Ansari, R., Torabi, J. and Hassani, R. (2019b), "A comprehensive study on the free vibration of arbitrary shaped thick functionally graded CNT-reinforced composite plates", Eng. Struct., 181, 653-669. https://doi.org/10.1016/j.engstruct.2018.12.049.
  4. Arefi, M., Bidgoli, E.M.R., Dimitri, R., Tornabene, F. and Reddy, J. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580.
  5. Ashrafi, B., Hubert, P. and Vengallatore, S. (2006), "Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems", Nanotechnol., 17(19), 4895-4903. https://doi.org/10.1088/0957-4484/17/19/019.
  6. Blooriyan, S., Ansari, R., Darvizeh, A., Gholami, R. and Rouhi, H. (2019), "Postbuckling analysis of functionally graded graphene platelet-reinforced polymer composite cylindrical shells using an analytical solution approach", Appl. Math. Mech., 40(7), 1001-1016. https://doi.org/10.1007/s10483-019-2498-8.
  7. Chen, Y., Jin, G. and Liu, Z. (2014), "Flexural and in-plane vibration analysis of elastically restrained thin rectangular plate with cutout using Chebyshev-Lagrangian method", Int. J. Mech. Sci., 89, 264-278. https://doi.org/10.1016/j.ijmecsci.2014.09.006.
  8. Ebrahimi, F., Seyfi, A., Dabbagh, A. and Tornabene, F. (2019) "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., 71, 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
  9. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022.
  10. Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018), "Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field", Struct. Eng. Mech., 67, 021-31. https://doi.org/10.12989/sem.2018.67.1.021.
  11. Faraji Oskouie, M., Ansari, R. and Rouhi, H. (2018), "Vibration analysis of FG nanobeams on the basis of fractional nonlocal model: A variational approach", Microsyst. Technol., 24(6), 2775-2782. https://doi.org/10.1007/s00542-018-3776-7.
  12. Gholami, R. and Ansari, R. (2017), "Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates", Compos. Struct., 180, 760-771. https://doi.org/10.1016/j.compstruct.2017.08.053.
  13. Gholami, R. and Ansari, R. (2018), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019.
  14. Gholami, R. and Ansari, R. (2019), "On the nonlinear vibrations of polymer nanocomposite rectangular plates reinforced by graphene nanoplatelets: A unified higher-order shear deformable model", Iran. J. Sci. Technol., Trans. Mech. Eng., 43(1), 603-620. https://doi.org/10.1007/s40997-018-0182-9.
  15. Hasrati, E., Ansari, R. and Rouhi, H. (2019), "Nonlinear free vibration analysis of shell-type structures by the variational differential quadrature method in the context of six-parameter shell theory", Int. J. Mech. Sci., 151, 33-45. https://doi.org/10.1016/j.ijmecsci.2018.10.053.
  16. Hassani, R., Ansari, R. and Rouhi, H. (2019), "A VDQ-based multifield approach to the 2D compressible nonlinear elasticity", Int. J. Numer. Meth. Eng., 118(6), 345-370. https://doi.org/10.1002/nme.6015.
  17. Hassani, R., Ansari, R. and Rouhi, H. (2020), "An efficient numerical approach to the micromorphic hyperelasticity", Continu. Mech. Thermodyn., 32, 1011-1036. https://doi.org/10.1007/s00161-019-00808-9
  18. Huang, B., Wang, J., Du, J., Ma, T., Guo, Y. and Qian, Z. (2016), "Vibration analysis of a specially orthotropic composite laminate with rectangular cutout using independent coordinate coupling method", Compos. Struct., 150, 53-61. https://doi.org/10.1016/j.compstruct.2016.05.010.
  19. Huang, M. and Sakiyama, T. (1999), "Free vibration analysis of rectangular plates with variously-shaped holes", J. Sound Vib., 226(4), 769-786. https://doi.org/10.1006/jsvi.1999.2313.
  20. Kurpa, L., Pilgun, G. and Amabili, M. (2007), "Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments", J. Sound Vib., 306(3-5), 580-600. https://doi.org/10.1016/j.jsv.2007.05.045.
  21. Lee, S.Y. and Park, T. (2009), "Free vibration of laminated composite skew plates with central cutouts", Struct. Eng. Mech., 31, 587-603. https://doi.org/10.12989/sem.2009.31.5.587.
  22. Loos, M. (2015), "Carbon nanotube reinforced composites", CNR Polym. Sci. Technol., 304. https://doi.org/10.1016/C2012-0-06123-6.
  23. Mandal, A., Ray, C. and Haldar, S. (2019), "Experimental and numerical studies on vibration characteristics of laminated composite skewed shells with cutout", Compos. Part B: Eng., 161, 228-240. https://doi.org/10.1016/j.compositesb.2018.10.075.
  24. Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., 57, 441-456. https://doi.org/10.12989/sem.2016.57.3.441.
  25. Pilgun, G. and Amabili, M. (2012), "Non-linear vibrations of shallow circular cylindrical panels with complex geometry. Meshless discretization with the R-functions method", Int. J. Nonlin. Mech., 47(3), 137-152. https://doi.org/10.1016/j.ijnonlinmec.2011.11.011.
  26. Rao, M., Schmidt, R. and Schroder, K.U. (2018). "Forced vibration analysis of FG-graphene platelet reinforced polymer composite shells bonded with piezoelectric layers considering electroelastic nonlinearities", ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 51944, V001T03A006.
  27. Reddy, J. and Khdeir, A. (1989), "Buckling and vibration of laminated composite plates using various plate theories", AIAA J., 27(12), 1808-1817. https://doi.org/10.2514/3.10338.
  28. Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC Press.
  29. Secor, E.B., Ahn, B.Y., Gao, T.Z., Lewis, J.A. and Hersam, M.C. (2015), "Rapid and versatile photonic annealing of graphene inks for flexible printed electronics", Adv. Mater., 27(42), 6683-6688. https://doi.org/10.1002/adma.201502866.
  30. Shi, G., Araby, S., Gibson, C.T., Meng, Q., Zhu, S. and Ma, J. (2018), "Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications", Adv. Funct. Mater., 28(19), 1706705. https://doi.org/10.1002/adfm.201706705.
  31. Shojaee, T., Mohammadi, B., Madoliat, R. and Salimi-Majd, D. (2019), "Development of a finite strip method for efficient prediction of buckling and post-buckling in composite laminates containing a cutout with/without stiffener", Compos. Struct., 210, 538-552. https://doi.org/10.1016/j.compstruct.2018.11.007.
  32. Shojaei, M.F. and Ansari, R. (2017), "Variational differential quadrature: A technique to simplify numerical analysis of structures", Appl. Math. Model., 49, 705-738. https://doi.org/10.1016/j.apm.2017.02.052.
  33. Shufrin, I. and Eisenberger, M. (2016), "Semi-analytical modeling of cutouts in rectangular plates with variable thickness-Free vibration analysis", Appl. Math. Model., 40(15), 6983-7000. https://doi.org/10.1016/j.apm.2016.02.020.
  34. Singh, S.B. and Kumar, D. (2008), "Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under uniaxial compression", Struct. Eng. Mech., 29, 455-467. https://doi.org/10.12989/sem.2008.29.4.455
  35. Torabi, J., Ansari, R. and Hassani, R. (2019), "Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory", Eur. J. Mech.-A/Solid., 73, 144-160. https://doi.org/10.1016/j.euromechsol.2018.07.009.
  36. Wang, Y., Feng, C., Santiuste, C., Zhao, Z. and Yang, J. (2019a), "Buckling and postbuckling of dielectric composite beam reinforced with Graphene Platelets (GPLs)", Aerosp. Sci. Technol., 91, 208-218. https://doi.org/10.1016/j.ast.2019.05.008.
  37. Wang, Y., Feng, C., Wang, X., Zhao, Z., Romero, C.S., Dong, Y. and Yang, J. (2019b), "Nonlinear static and dynamic responses of graphene platelets reinforced composite beam with dielectric permittivity", Appl. Math. Model., 71, 298-315. https://doi.org/10.1016/j.apm.2019.02.025.
  38. Wang, Y., Fu, T. and Zhang, W. (2021), "An accurate size-dependent sinusoidal shear deformable framework for GNP-reinforced cylindrical panels: Applications to dynamic stability analysis", Thin Wall. Struct., 160, 107400. https://doi.org/10.1016/j.tws.2020.107400.
  39. Wang, Y., Xie, K. and Fu, T. (2020), "Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides", Struct. Eng. Mech., 73, 685-698. https://doi.org/10.12989/sem.2020.73.6.685.
  40. Wang, Y., Xie, K., Fu, T. and Shi, C. (2019c), "Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses", Compos. Struct., 209, 928-939. https://doi.org/10.1016/j.compstruct.2018.11.014.
  41. Wang, Y., Xie, K., Shi, C. and Fu, T. (2019d), "Nonlinear bending of axially functionally graded microbeams reinforced by graphene nanoplatelets in thermal environments", Mater. Res. Expr., 6, 085615. https://doi.org/10.1088/2053-1591/ab1eef.
  42. Zhang, D.G. (2014), "Nonlinear bending analysis of FGM rectangular plates with various supported boundaries resting on two-parameter elastic foundations", Arch. Appl. Mech., 84(1), 1-20. https://doi.org/10.1007/s00419-013-0775-0.
  43. Zhou, X., Wang, Y. and Zhang, W. (2021), "Vibration and flutter characteristics of GPL-reinforced functionally graded porous cylindrical panels subjected to supersonic flow", Acta Astronautica, 183, 89-100. https://doi.org/10.1016/j.actaastro.2021.03.003.
  44. Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J. and Xu, X. (2019), "Accurate nonlinear buckling analysis of functionally graded porous graphene platelet reinforced composite cylindrical shells", Int. J. Mech. Sci., 151, 537-550. https://doi.org/10.1016/j.ijmecsci.2018.12.012.