DOI QR코드

DOI QR Code

Structural and Photocatalytic Properties of TiO2 Thin Film Coated Glass Beads

유리알에 코팅된 TiO2 박막의 구조 및 광촉매 특성

  • Ji Eun, Jeong (Department of Environmental Engineering, Kongju National University) ;
  • Chang-Yong, Lee (Department of Environmental Engineering, Kongju National University)
  • 정지은 (공주대학교 환경공학과) ;
  • 이창용 (공주대학교 환경공학과)
  • Received : 2022.12.08
  • Accepted : 2022.12.27
  • Published : 2023.02.10

Abstract

The glass bead surface was coated using a TiO2 sol, after which dry-treated (TB) and calcined (TBc) samples were prepared. Photocatalytic degradation of methylene blue and toluene, as well as characterization of the TiO2 thin films, were carried out. The TiO2 thin film of the TB sample had the same shape as the sponge foam, according to FE-SEM, XPS, and FTIR analyses, and contained both amorphous and crystalline TiO2. On the other hand, crystalline TiO2 was mainly present in the TiO2 thin film of the TBc sample, and needle-shaped particles and tiny ones were mixed. The adsorption capacity for methylene blue and the degradation rate of the TBc sample were less than 10 % compared with those of the TB sample, and the adsorption capacity and degradation rate of the TBc sample decreased similarly as the amount of TiO2 coating increased. The amount of toluene adsorption for the TBc sample (46 mg/g) was smaller than that of the TB sample with the same coating amount, but the degradation rate was similar. In the case of the TB sample, the degradation rate for toluene decreased less than the adsorption capacity as the amount of TiO2 coating increased. This result is considered to be because, in the non-calcined TB sample, the active site reduction of the crystalline particles occurred less and the specific surface area of the amorphous texture decreased as the amount of TiO2 coating increased.

TiO2 졸을 사용하여 유리알 표면에 TiO2 코팅한 후 건조 처리한 시료(TB)와 소성한 시료(TBc)를 제조하였다. 이들 시료에 대한 TiO2 박막의 특성분석과 메틸렌블루 및 톨루엔의 광분해 실험을 수행하였다. FE-SEM, XPS 및 FTIR 분석 결과, TB 시료의 TiO2 박막은 스펀지 폼과 같은 형태이며 무정형 TiO2와 일부 결정형 TiO2가 존재하였다. TBc 시료의 TiO2 박막에는 결정형 TiO2가 주로 존재하며 침상형 입자와 미세 입자들이 혼재하였다. TBc 시료(46 mg/g)의 톨루엔 흡착량은 같은 코팅량의 TB 시료 대비 적었으나 톨루엔 분해율은 비슷했다. TB 시료의 경우, TiO2 코팅량이 증가함에 따라 톨루엔 분해능이 흡착능에 비해 적게 감소하였다. 이러한 결과는 소성하지 않은 TB 시료는 TiO2 코팅량이 증가하면 무정형 텍스처의 비표면적은 감소하는 반면 결정성 입자들의 활성점 감소는 적게 일어나기 때문으로 판단된다.

Keywords

Acknowledgement

이 논문은 2021년 공주대학교 학술연구지원사업의 연구지원에 의하여 연구되었음.

References

  1. S. Lim, T. D. Nguyen-Phan, and E. W. Shin, Effect of heat treatment temperatures on photocatalytic degradation of methylene blue by mesoporous titania, Appl. Chem. Eng., 22, 60-66 (2010).
  2. H. J. Lee, Y. G. Park, S. W. Lee, and J. H. Park, Photocatalytic properties of TiO2 according to manufacturing method, Korean Chem. Eng. Res., 56, 156-161 (2018).
  3. H. H. Jung, J. H. Kim, J. Hwang, T. Y. Lim, and D. G. Choi, Fabrication of super hydrophilic TiO2 thin film by a liquid phase deposition, J. Korean Cryst. Growth Cryst. Technol., 20, 227-231 (2010). https://doi.org/10.6111/JKCGCT.2010.20.5.227
  4. K. H. Kim, Y. B. Kim, S. Y. Lee, J. H. Park, J. Y. Lim, S. C. Jung, Decomposition of formaldehyde using TiO2 photocatalyst beads by circulating fluidized bed chemical vapor deposition, J. Korean Soc. Environ. Eng., 30, 688-693 (2008).
  5. S. H. Lee and C. Y. Lee, Visible light induced photocatalytic activity of N-doped TiO2, Appl. Chem. Eng., 29, 298-302 (2018). https://doi.org/10.14478/ACE.2017.1129
  6. J. S. Lee, Y. J. Chae, M. J. Lee, S. Kim, J. Hwang, T. Y. Lim, S. K. Hyun, and J. H. Kim, Fabrication of photocatalyst glass beads coated with TiO2 thin film by a layer-by-layer process, Korean J. Mater. Res., 22, 379-383 (2012). https://doi.org/10.3740/MRSK.2012.22.7.379
  7. D. Wood, S. Shaw, T. Cawte, E. Shanen, and B. V. Heyst, An overview of photocatalyst immobilization methods for air pollution remediation, Chem. Eng. J., 391, 123490 (2020).
  8. R. S. Sonawane, S. G. Hegde, and M. K. Dongrae, Preparation of titanium (IV) oxide thin film photocatalyst by sol-gel dip coating, Mater. Chem. Phys., 77, 744-750 (2003). https://doi.org/10.1016/S0254-0584(02)00138-4
  9. H. S. Son, W. H. Yang, H. Y. Kim, S. J. Lee, J. R. Park, and K. D. Zoh, Photocatalytic degradation of benzene in the gas phase using TiO2 Coated on Ceramic and Glass Bead, J. Korean Soc. Atmos. Environ., 19, 57-56 (2003).
  10. A. Bouarioua and M. Zerdaoui, Photocatalytic activities of TiO2 layers immobilized on glass substrates by dip-coating technique toward the decolorization of methyl orange as a model organic pollutant, J. Environ. Chem. Eng., 5, 1565-1574 (2017). https://doi.org/10.1016/j.jece.2017.02.025
  11. V. Vaiano, O. Sacco, D. Sannino, and P. Ciambelli, Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation, Appl. Catal, B: Environ., 170, 153-161 (2015). https://doi.org/10.1016/j.apcatb.2015.01.039
  12. M. Q. Wang, J. Yan, H. P. Cui, and S. G. Du, Low temperature preparation and characterization of TiO2 nanoparticles coated glass beads by heterogeneous nucleation method, Mater. Charact., 76, 39-47 (2013). https://doi.org/10.1016/j.matchar.2012.12.002
  13. P. C. Bezerra, R. P. Cavalcante, A. Garcia, H. Wender, M. A. Martines, G. A. Casagrande, J. Gimenez, P. Marco, S. C. Oliveira, and A. M. Junior, Synthesis, characterization, and photocatalytic activity of pure and N-, B-, or Ag- doped TiO2, J. Braz. Chem. Soc., 28, 1788-1802 (2017).
  14. S. S. Park, Preparation and electrical properties of TiO2 films prepared by sputtering for a pulse power capacitor, J. Korean Ceram. Soc., 49, 642-647 (2012). https://doi.org/10.4191/kcers.2012.49.6.642
  15. I. Iatsunskyi, M. Kempinski, G. Nowaczyk, M. Jancelewicz, M. Pavlenko, K. Zaleski, and S. Jurga, Structural and XPS studies of Psi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etching, Appl. Surf. Sci., 347, 777-783 (2015). https://doi.org/10.1016/j.apsusc.2015.04.172
  16. M. Hannula, H. Ali-Loytty, K. Lahtonen, E. Sarlin, J. Saari, and M. Valden, Improved stability of atomic layer deposited amorphous TiO2 photoelectrode coatings by thermally induced oxygen defects, Chem. Mater., 30, 1199-1208 (2018). https://doi.org/10.1021/acs.chemmater.7b02938
  17. B. Bharti, S. Kumar, H. N. Lee, and R. Kumar, Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment, Sci. Rep., 6, 1-12 (2016). https://doi.org/10.1038/s41598-016-0001-8
  18. T. Jia, J. Zhang, J. Wu, D. Wang, Q. Liu, Y. Qi, B. Hu, P. He, W. Pan, and W. Qi, Synthesis amorphous TiO2 with oxygen vacancy as carriers transport channels for enhancing photocatalytic activity, Mater. Lett., 265, 127465 (2020).
  19. D. Niznanksy and J. L. Rehspringer, Infrared study of SiO2 sol to gel evolution and gel aging, J. Non. Cryst. Solids., 180, 191-196 (1995). https://doi.org/10.1016/0022-3093(94)00484-6
  20. M. Madani, K. Omri, N. Fattach, A. Ghorbal, and X. Portier, Influence of silica ratio on structural and optical properties of SiO2/TiO2 nanocomposites prepared by simple solid-phase reaction, J. Mater. Sci.: Mater. Electron., 28, 12977-12983 (2017). https://doi.org/10.1007/s10854-017-7129-6
  21. Y. G. Park, The effect of TiO2 film thickness on the photo-degradation of formaldehyde, J. Korean Soc. Environ Eng., 29, 1243-1250 (2007).