Acknowledgement
We are grateful to the Technical Support Center at Tohoku University for the use of their LTQ Orbitrap Velos.
References
- Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H, Martin C (2020) Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 21:1-34. https://doi.org/10.3390/ijms21176275
- The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (2003) Report of the expert committee on the description of diabetes categories of glucose. Diabetes 26:s5-s20. https://doi.org/10.2337/diacare.26.2007.S5
- Czech MP (2017) Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23:804-814. https://doi.org/10.1038/nm.4350
- Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89:27-71. https://doi.org/10.1152/physrev.00014.2008
- Ceriello A, Motz E (2004) Is Oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816-823. https://doi.org/10.1161/01.ATV.0000122852.22604.78
- Demozay D, Mas JC, Rocchi S, Van Obberghen E (2008) FALDH reverses the deleterious action of oxidative stress induced by lipid peroxidation product 4-hydroxynonenal on insulin signaling in 3T3-L1 adipocytes. Diabetes 57:1216-1226. https://doi.org/10.2337/db07-0389
- Shearn CT, Fritz KS, Reigan P, Petersen DR (2011) Modification of Akt2 by 4-hydroxynonenal inhibits insulin-dependent Akt signaling in HepG2 cells. Biochemistry 50:3984-3996. https://doi.org/10.1021/bi200029w
- Aoi W, Naito Y, Tokuda H, Tanimura Y, Oya-Ito T, Yoshikawa T (2012) Exercise-induced muscle damage impairs insulin signaling pathway associated with IRS-1 oxidative modification. Physiol Res 61:81-88. https://doi.org/10.33549/physiolres.932239
- Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22-38. https://doi.org/10.1111/j.1749-6632.2001.tb05632.x
- Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7-15. https://doi.org/10.1083/jcb.201102095
- Lee SH, Oe T, Blair IA (2001) Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins. Science 292:2083-2086. https://doi.org/10.1126/science.1059501
- Sayre LM, Lin D, Yuan Q, Zhu X, Tang X (2006) Protein adducts generated from products of lipid oxidation: focus on HNE and ONE. Drug Metab Rev 38:651-675. https://doi.org/10.1080/03602530600959508
- Lee SH, Goto T, Oe T (2008) A novel 4-oxo-2(E)-nonenal-derived modification to angiotensin II: oxidative decarboxylation of N-terminal aspartic acid. Chem Res Toxicol 21:2237-2244. https://doi.org/10.1021/tx800316v
- Oe T, Lee SH, Elipe MVS, Arison BH, Blair IA (2003) A novel lipid hydroperoxide-derived modification to arginine. Chem Res Toxicol 16:1598-1605. https://doi.org/10.1021/tx034178l
- Zhu X, Sayre LM (2007) Long-lived 4-oxo-2-enal-derived apparent Lysine Michael adducts are actually the isomeric 4-ketoamides. Chem Res Toxicol 20:165-170. https://doi.org/10.1021/tx600295j
- Sasson S (2017) Nutrient overload, lipid peroxidation and pancreatic beta cell function. Free Radic Biol Med 111:102-109. https://doi.org/10.1016/j.freeradbiomed.2016.09.003
- Toyokuni S, Yamada S, Kashima M, Ihara Y, Yamada Y, Tanaka T, Hiai H, Seino Y, Uchida K (2000) Serum 4-hydroxy-2-nonenal-modified albumin is elevated in patients with type 2 diabetes mellitus. Antioxid Redox Signal 2:681-685. https://doi.org/10.1089/ars.2000.2.4-681
- Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, Hiai H, Seino Y, Yamada Y (1999) Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats, a model of type 2 diabetes. Diabetes 48:927-932. https://doi.org/10.2337/diabetes.48.4.927
- Lou B, Boger M, Bennewitz K, Sticht C, Kopf S, Morgenstern J, Fleming T, Hell R, Yuan Z, Nawroth PP, Kroll J (2020) Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biol 37:101723. https://doi.org/10.1016/j.redox.2020.101723
- Liu G, Ji W, Huang J, Liu L, Wang Y (2016) 4-HNE expression in diabetic rat kidneys and the protective effects of probucol. J Endocrinol Invest 39:865-873. https://doi.org/10.1007/s40618-015-0428-y
- Akude E, Zherebitskaya E, Roy Chowdhury SK, Girling K, Fernyhough P (2010) 4-Hydroxy-2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult sensory neurons that mimics features of diabetic neuropathy. Neurotox Res 17:28-38. https://doi.org/10.1007/s12640-009-9074-5
- Lin D, Lee HG, Liu Q, Perry G, Smith MA, Sayre LM (2005) 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem Res Toxicol 18:1219-1231. https://doi.org/10.1021/tx050080q
- Voziyan PA, Hudson BG (2005) Pyridoxamine as a multifunctional pharmaceutical: Targeting pathogenic glycation and oxidative damage. Cell Mol Life Sci 62:1671-1681. https://doi.org/10.1007/s00018-005-5082-7
- Parra M, Stahl S, Hellmann H (2018) Vitamin B6 and its role in cell metabolism and physiology. Cells 7:84. https://doi.org/10.3390/cells7070084
- Abdullah KM, Abul Qais F, Hasan H, Naseem I (2019) Anti-diabetic study of vitamin B6 on hyperglycaemia induced protein carbonylation, DNA damage and ROS production in alloxan induced diabetic rats. Toxicol Res (Camb) 8:568-579. https://doi.org/10.1039/c9tx00089e
- Nagaraj RH, Sarkar P, Mally A, Biemel KM, Lederer MO, Padayatti PS (2002) Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Arch Biochem Biophys 402:110-119. https://doi.org/10.1016/S0003-9861(02)00067-X
- Voziyan PA, Metz TO, Baynes JW, Hudson BG (2002) A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation. J Biol Chem 277:3397-3403. https://doi.org/10.1074/jbc.M109935200
- Kang Z, Li H, Li G, Yin D (2006) Reaction of pyridoxamine with malondialdehyde: mechanism of inhibition of formation of advanced lipoxidation end-products. Amino Acids 30:55-61. https://doi.org/10.1007/s00726-005-0209-6
- Amarnath V, Amarnath K, Amarnath K, Davies S, Roberts LJ (2004) Pyridoxamine: an extremely potent scavenger of 1,4-dicarbonyls. Chem Res Toxicol 17:410-415. https://doi.org/10.1021/tx0300535
- Davies SS, Brantley EJ, Voziyan PA, Amarnath V, Zagol-Ikapitte I, Boutaud O, Hudson BG, Oates JA, Roberts LJ (2006) Pyridoxamine analogues scavenge lipid-derived γ-ketoaldehydes and protect against H2O2-mediated cytotoxicity. Biochemistry 45:15756-15767. https://doi.org/10.1021/bi061860g
- Amarnath V, Amarnath K (2015) Scavenging 4-oxo-2-nonenal. Chem Res Toxicol 28:1888-1890. https://doi.org/10.1021/acs.chemrestox.5b00301
- Lee SH, Matsunaga A, Oe T (2018) Inhibition effect of pyridoxamine on lipid hydroperoxide-derived modifications to human serum albumin. PLoS ONE 13:1-23. https://doi.org/10.1371/journal.pone.0196050
- Copps KD, White MF (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55:2565-2582. https://doi.org/10.1007/s00125-012-2644-8
- Eck MJ, Dhe-Paganon S, Trub T, Nolle RT, Shoelson SE (1996) Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85:695-705. https://doi.org/10.1016/S0092-8674(00)81236-2