DOI QR코드

DOI QR Code

Electrodialysis with a channeled stack for high strength cadmium removal from wastewater

  • Kyung Jin, Min (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Hyo Jin, An (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Ah Hyun, Lee (Department of Civil and Environmental Engineering, Konkuk University) ;
  • Hyun-Gon, Shin (Department of Energy and Environmental Engineering, Shinhan University) ;
  • Ki Young, Park (Department of Civil and Environmental Engineering, Konkuk University)
  • Received : 2022.09.29
  • Accepted : 2023.02.02
  • Published : 2023.01.25

Abstract

In this study, high concentrations of cadmium-containing wastewater were treated by electrodialysis (ED) with a channel stack. The limiting current density (LCD), cadmium removal efficiency, and current efficiency were investigated under each experimental condition according to the Reynolds number (Re), membrane area, and pH. With the increase in the film area to 111, 333, 555, and 777 cm2 at Re (109.1), LCDs decreased to 408.11, 44.45, 35.32, and 13.64 A/m2, respectively. The highest cadmium removal efficiency (99.6%) and current efficiency were obtained for the membrane area of 111 and 777 cm2, respectively. Under changing Re in the pH range of 1 to 4, Re and LCD were proportional under the same pH condition, and pH and LCD tended to be inversely proportional under the same Re condition. Cadmium removal rate was the best at the pH range 3 - 4. It has been found that ED with channeled stacks can be successfully applied to treat wastewater containing high concentrations of cadmium.

Keywords

Acknowledgement

This paper was supported by Konkuk University Researcher Fund in 2022, and Waste to Energy-Recycling Human Resource Development Project (YL-WE-21-001).

References

  1. Al-Sharif, S., Albeirutty, M., Cipollina, A. and Micale, G. (2013), "Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code", Desalination, 311, 103-112. https://doi.org/1016/j.desal.2012.11.005. 1016/j.desal.2012.11.005
  2. Ali, M. S., Hafiane, A., Dhahbi, M. and Hamrouni, B. (2014), "Electrodialytic removal of cadmium from brackish water: effects of operating parameters", J. Memb. Sep. Technol., 3(2), 67-77. https://doi.org/10.6000/1929-6037.2014.03.02.1.
  3. Andreeva, M.A., Gil, V.V., Pismenskaya, N.D., Dammak, L., Kononenko, N.A., Larchet, C., Grande, D., Nikonenko, V.V. (2018), "Mitigation of membrane scaling in electrodialysis by electroconvection enhancement, pH adjustment and pulsed electric field application", J. Membr. Sci., 549, 129-140. https://doi.org/10.1016/j.memsci.2017.12.005.
  4. Benvenuti, T., Krapf, R.S., Rodrigues, M.A.S., Bernardes, A.M. and Zoppas-Ferreira, J. (2014), "Recovery of nickel and water from nickel electroplating wastewater by electrodialysis", Sep. Purif. Technol., 129, 106-112. https://doi.org/10.1016/j.seppur.2014.04.002.
  5. Cararescu, S., V. Purcar, and D. Vaireany. (2012), "Separation of copper ions from synthetically prepared electroplating wastewater at different operating conditions using electrodialysis", Sepa. Sci. Technol., 47(16), 2273-2280. https://doi.org/10.1080/01496395.2012.669444.
  6. Chao, Y. M. and Liang, T.M. (2008), "A feasibility study of industrial wastewater recovery using electrodialysis reversal", Desalination, 221(1-3), 433-439. https://doi.org/10.1016/j.desal.2007.04.065.
  7. Chehayeb, K.M. and Lienhard, J.H. (2017), "Entropy generation analysis of electrodialysis", Desalination, 413, 184-198. https://doi.org/10.1016/j.desal.2017.03.001.
  8. Daniilidis, A., Vermaas, D.A., Herber, R. and Nijmeijer, K. (2014), "Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis", Renew. Energy, 64, 123-131. https://doi.org/10.1016/j.renene.2013.11.001.
  9. Gurreri, L., Tamburini, A., Cipollina, A. and Micale, G. (2012), "CFD analysis of the fluid flow behavior in a reverse electrodialysis stack", Desalin. Water Treat., 48(1), 390-403. https://doi.org/10.1080/19443994.2012.705966.
  10. Gurreri, L., Tamburini, A., Cipollina, A., Micale, G. and Ciofalo, M. (2014), "CFD prediction of concentration polarization phenomena in spacer-filled channels for reverse electrodialysis", J. Membr. Sci., 468, 133-148. https://doi.org/10.1016/j.memsci.2014.05.058.
  11. Gurreri, L., Tamburini, A., Cipollina, A., Micale, G. and Ciofalo, M. (2016), "Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study", J. Membr. Sci., 497, 300-317. https://doi.org/10.1016/j.memsci.2015.09.006.
  12. Ji, Z.Y., Chen, Q.B., Yuan, J.S., Liu, J., Zhao, Y.Y. and Feng, W.X. (2017), "Preliminary study on recovering lithium from high Mg2+/Li+ratio brines by electrodialysis", Sep. Purif. Technol., 172, 168-177. https://doi.org/10.1016/j.seppur.2016.08.006.
  13. Kim, J., Yoon, S., Choi, M., Min, K.J., Park, K.Y., Chon, K. and Bae, S. (2022), "Metal ion recovery from electrodialysis-concentrated plating wastewater via pilot-scale sequential electrowinning/chemical precipitation", J. Clean. Prod., 330, 129879. https://doi.org/10.1016/j.jclepro.2021.129879.
  14. Kingsbury, R.S., Liu, F., Zhu, S., Boggs, C., Armstrong, M.D., Call, D.F. and Coronell, O. (2017), "Impact of natural organic matter and inorganic solutes on energy recovery from five real salinity gradients using reverse electrodialysis", J. Membr. Sci., 541, 621-632. https://doi.org/10.1016/j.memsci.2017.07.038.
  15. La Cerva, M., Ciofalo, M., Gurreri, L., Tamburini, A., Cipollina, A. and Micale, G. (2017), "On some issues in the computational modelling of spacer-filled channels for membrane distillation", Desalination, 411, 101-111. https://doi.org/10.1016/j.desal.2017.02.016.
  16. La Cerva, M., Gurreri, L., Tedesco, M., Cipollina, A., Ciofalo, M., Tamburini, A. and Micale, G. (2018), "Determination of limiting current density and current efficiency in electrodialysis units", Desalination, 445, 138-148. https://doi.org/10.1016/j.desal.2018.07.028.
  17. Lee, G. (2011), "Effects of operating parameters on the removal performance of electrodialysis for treating wastewater containing cadmium", Desalin. Water Treat., 35(1-3), 150-157. http://dx.doi.org/10.5004/dwt.2011.2850.
  18. Min, K.J., Choi, S.Y., Jang, D., Lee, J. and Park, K.Y. (2019), "Separation of metals from electroplating wastewater using electrodialysis", Energ. Source Part A, 41(20), 2471-2480. https://doi.org/10.1080/15567036.2019.1568629.
  19. Min, K.J., Kim, J.H. and Park, K.Y. (2021a), "Characteristics of heavy metal separation and determination of limiting current density in a pilot-scale electrodialysis process for plating wastewater treatment", Sci. Total Environ., 757, 143762. https://doi.org/10.1016/j.scitotenv.2020.143762.
  20. Min, K.J., Kim, J.H., Kim, S.W., Lee, S., Shin, H.G., and Park, K.Y. (2021b), "Copper and nickel removal from plating wastewater in the electrodialysis process using a channeled stack", Membr. Water Treat., 12(4), 149-155. https://doi.org/10.12989/mwt.2021.12.4.149.
  21. Min, K.J., Kim, J.H., Oh, E.J., Ryu, J.H. and Park, K.Y. (2021c), "Flow velocity and cell pair number effect on current efficiency in plating wastewater treatment through electrodialysis", Environ. Eng. Res., 26(2), 190502. https://doi.org/10.4491/eer.2019.502.
  22. Ortiz-Martinez, V.M., Gomez-Coma, L., Tristan, C., Perez, G., Fallanza, M., Ortiz, A. and Ortiz, I. (2020), "A comprehensive study on the effects of operation variables on reverse electrodialysis performance", Desalination, 482, 114389. https://doi.org/10.1016/j.desal.2020.114389.
  23. Park, H.S., Kim, T.Y. and Kim, D. (2019). "Efficiency analysis of zinc refining companies", Sustain., 11(22), 6528. https://doi.org/10.3390/su11226528.
  24. Purkayasthha, D., Mishra, U. and Biswas. S. (2014), "A comprehensive review on Cd (II) removal from aqueous solution", J. Water Proc. Eng., 2, 105-128. https://doi.org/10.1016/j.jwpe.2014.05.009.
  25. Saeed, A., Vuthaluru, R. and Vuthaluru, H.B. (2015), "Investigations into the effects of mass transport and flow dynamics of spacer filled membrane modules using CFD", Chem. Eng. Res. Des., 93, 79-99. https://doi.org/10.1016/j.cherd.2014.07.002.
  26. Shakaib, M., Hasani, S.M.F., Ahmed, I. and Yunus, R.M. (2012), "A CFD study on the effect of spacer orientation on temperature polarization in membrane distillation modules", Desalination, 284, 332-340. https://doi.org/10.1016/S0376-7388(01)00494-X.
  27. Sohn, H. (2019), "Current Status of Zinc Smelting and Recycling", J. Korean Inst. Resour. Recycl., 28(5), 30-41. https://doi.org/4/kirr.2019.28.5.30.
  28. Tedesco, M., Cipollina, A., Tamburini, A., van Baak, W. and Micale, G. (2012), "Modelling the Reverse ElectroDialysis process with seawater and concentrated brines", Desalin. Water Treat., 49(1), 404-424. https://doi.org/10.1080/19443994.2012.699355.
  29. Tedesco, M., Scalici, C., Vaccari, D., Cipollina, A., Tamburini, A. and Micale, G. (2016), "Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines", J. Membr. Sci., 500, 33-45. https://doi.org/10.1016/j.memsci.2015.10.057.
  30. Tufa, R.A., Curcio, E., van Baak, W., Veerman, J., Grasman, S., Fontananova, E. and Di Profio, G. (2014), "Potential of brackish water and brine for energy generation by salinity gradient power-reverse electrodialysis (SGP-RE)", RSC Adv., 4(80), 42617-42623. https://doi.org/10.1039/C4RA05968A.
  31. Walker, W.S., Kim, Y. and Lawler, D.F. (2014), "Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis-Part I: Sensitivity to superficial velocity", Desalination, 344, 152-162. https://doi.org/10.1016/j.desal.2014.03.035.
  32. Yuan, Z. and Shi, L. (2009), "Improving enterprise competitive advantage with industrial symbiosis: case study of a smeltery in China", J. Clean. Prod, 17(14), 1295-1302. https://doi.org/10.1016/j.jclepro.2009.03.016.
  33. Yun, J.J. (2015), "How do we conquer the growth limits of capitalism? Schumpeterian dynamics of open innovation", J. Open Innov., 1(2), 17. https://doi.org/10.1186/s40852-015-0019-3.