Acknowledgement
This work was supported by the Korea Environment Industry & Technology Institute (KEITI) through the Ecological Imitation-based Environmental Pollution Management Technology Development Project funded by the Korea Ministry of Environment (MOE) (2021002800007) and the Korea CCUS Association (K-CCUS) grant funded by the Korea Government (MOE, MOTIE). (KCCUS 20220001, Human Resources Program for Reduction of greenhouse gases), and Konkuk University Researcher Fund in 2022.
References
- Al-Shannag, M., Lafi, W., Bani-Melhem, K., Gharagheer, F. and Dhaimat, O. (2012), "Reduction of COD and TSS from paper industries wastewater using electro-coagulation and chemical coagulation", Sep. Sci. Technol., 47, 700-708. https://doi.org/10.1080/01496395.2011.634474
- Burakova, A. and Baksiene, E. (2021), "Leaching losses of main nutrients by incorporating organic fertilisers into light texture soils Haplic Luvisol", Environ. Eng. Res., 26(4), 200190. https://doi.org/10.4491/eer.2020.190
- Choi, Y.K., Jang, H.M., Kan, E., Wallace, A.R. and Sun, W. (2019), "Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar", Environ. Eng. Res., 24, 434-442. https://doi.org/10.4491/eer.2018.296
- De Rooij, J.F., Heughebaert, J.C. and Nancollas, G.H. (1984), "A ph study of calcium phosphate seeded precipitation", J. Colloid Interface Sci., 100, 350-358. https://doi.org/10.1016/0021-9797(84)90440-5
- Desireddy, S., Madhavan, S. and P.C.S. (2022), "Development and long-term operation of aerobic granular system for simultaneous removal of COD, nitrogen, and phosphorous in a conical SBR", Environ. Eng. Res., 28, 220015-0. https://doi.org/10.4491/ee.r.2022.015
- Hong, S.H., Lee, C.G., Jeong, S. and Park, S.J. (2020), "Synthesis of polysulfone beads impregnated with Ca-sepiolite for phosphate removal", Membr. Water Treat., 11(1), 69-77. https://doi.org/10.12989/mwt.2020.11.1.069
- Hosni, K., Ben Moussa, S. and Ben Amor, M. (2007), "Conditions influencing the removal of phosphate from synthetic wastewater: Influence of the ionic composition", Desalination, 206, 279-285. https://doi.org/10.1016/j.desal.2006.03.570
- Hosni, K., Ben Moussa, S., Chachi, A. and Ben Amor, M. (2008), "The removal of PO23-- by calcium hydroxide from synthetic wastewater: Optimisation of the operating conditions", Desalination, 223, 337-343. https://doi.org/10.1016/j.desal.2007.01.213
- Kwak, S. and Yun, Z. (2020), "The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea", Membr. Water Treat., 11(5), 345-351. https://doi.org/10.12989/mwt.2020.11.5.345
- Li, R., Wang, J.J., Zhou, B., Awasthi, M.K., Ali, A., Zhang, Z., Lahori, A.H. and Mahar, A. (2016), "Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute", Bioresour. Technol., 215, 209-214. https://doi.org/10.1016/j.biortech.2016.02.125
- Li, S., Lei, T., Jiang, F., Liu, M., Wang, Y., Wang, S. and Yang, X. (2020), "Tuning the morphology and adsorption capacity of Al-MIL-101 analogues with Fe3+ for phosphorus removal from water", J. Colloid Interface Sci., 560, 321-329. https://doi.org/10.1016/j.jcis.2019.10.077
- Loganathan, P., Vigneswaran, S., Kandasamy, J. and Bolan, N.S. (2014), "Removal and recovery of phosphate from water using sorption", Crit. Rev. Environ. Sci. Technol., 44, 847-907. https://doi.org/10.1080/10643389.2012.741311
- Morse, G.K., Brett, S.W., Guy, J.A. and Lester, J.N. (1998), "Review: Phosphorus removal and recovery technologies", Sci. Total Environ., 212, 69-81. https://doi.org/10.1016/S0048-9697(97)00332-X
- Nikolenko, M. V, Vasylenko, K. V, Myrhorodska, V.D., Kostyniuk, A. and Likozar, B. (2020), "Synthesis of calcium orthophosphates by chemical precipitation in aqueous solutions : The effect of the acidity, ca/p molar ratio, and temperature on the phase composition and solubility of precipitates", Processes, 8(9), 1009. https://doi.org/10.3390/pr8091009
- Nir, O., Sengpiel, R. and Wessling, M. (2018), "Closing the cycle: Phosphorus removal and recovery from diluted effluents using acid resistive membranes", Chem. Eng. J., 346, 640-648. https://doi.org/10.1016/j.cej.2018.03.181
- Rumble, J. (2018), CRC Handbook of Chemistry and Physics, 99 ed, CRC Press.
- Shin, J., Kwak, J., Kim, S., Son, C., Lee, Y.G., Kim, J., Bae, S., Park, Y., Lee, S.H. and Chon, K. (2023), "Highly selective recovery of phosphate ions using a novel carbonaceous adsorbent synthesized via co-pyrolysis of spent coffee grounds and steel slags: A potential phosphatic fertilizer", Chem. Eng. J., 451, 138978. https://doi.org/10.1016/j.cej.2022.138978
- Shin, S.Y., Kim, J.H. and Ahn, J.H. (2016), "Phosphorus removal from municipal wastewater using ti-based coagulants", J. Korean Soc. Environ. Eng., 38, 428-434. https://doi.org/10.4491/ksee.2016.38.8.428
- Thistleton, J., Berry, T.A., Pearce, P. and Parsons, S.A. (2002), "Mechanisms of chemical phosphorus removal II. Iron (III) salts", Process Saf. Environ. Prot. Trans. Inst. Chem. Eng. Part B, 80, 265-269. https://doi.org/10.1205/095758202762277623
- Vaccari, D.A., Powers, S.M. and Liu, X. (2019), "Demand-driven model for global phosphate rock suggests paths for phosphorus sustainability", Environ. Sci. Technol., 53, 10417-10425. https://doi.org/10.1021/acs.est.9b02464
- Yoon, S., Choi, M., Hwang, Y. and Bae, S. (2021), "Upcycling of steel slag for manufacture of Prussian-blue-encapsulated pectin beads and its use for efficient removal of aqueous cesium." J. Clean. Prod., 319, 128786. https://doi.org/10.1016/j.jclepro.2021.128786