DOI QR코드

DOI QR Code

Thermally-activated Mactra veneriformis shells for phosphate removal in aqueous solution

  • Yeon-Jin, Lee (Department of Bioresources and Rural System Engineering, Hankyong National University) ;
  • Jae-In, Lee (Department of Integrated System Engineering, Hankyong National University) ;
  • Chang-Gu, Lee (Department of Environmental and Safety Engineering, Ajou University) ;
  • Seong-Jik, Park (Department of Bioresources and Rural System Engineering, Hankyong National University)
  • 투고 : 2022.10.05
  • 심사 : 2022.11.22
  • 발행 : 2023.01.25

초록

This study explored the feasibility of calcium-rich food waste, Mactra veneriformis shells (MVS), as an adsorbent for phosphate removal, and its removal efficiency was enhanced by the thermal activation process. The CaCO3 in MVS was converted to CaO by thermal activation (>800 ℃), which is more favorable for adsorbing phosphate. Thermal activation did not noticeably influence the specific surface area of MVS. The MVS thermally activated at 800 ℃ (MVS-800), showed the highest phosphate adsorption capacity, was used for further adsorption experiments, including kinetics, equilibrium isotherms, and thermodynamic adsorption. The effects of environmental factors, including pH, competing anions, and adsorbent dosage, were also studied. Phosphate adsorption by MVS-800 reached equilibrium within 48h, and the kinetic adsorption data were well explained by the pseudo-first-order model. The Langmuir model was a better fit for phosphate adsorption by MVS-800 than the Freundlich model, and the maximum adsorption capacity of MVS-800 obtained via the Langmuir model was 188.86 mg/g. Phosphate adsorption is an endothermic and involuntary process. As the pH increased, the phosphate adsorption decreased, and a sharp decrease was observed between pH 7 and 9. The presence of anions had a negative impact on phosphate removal, and their impact followed the decreasing order CO32- > SO42- > NO3- > Cl-. The increase in adsorbent dosage increased phosphate removal percentage, and 6.67 g/L of MVS-800 dose achieved 99.9% of phosphate removal. It can be concluded that the thermally treated MVS-800 can be used as an effective adsorbent for removing phosphate.

키워드

과제정보

This work was studied with the support of the joint research project (No. PJ016998) of the Rural Development Administration (RDA).

참고문헌

  1. Babatunde, A.O. and Zhao, Y.Q. (2010), "Equilibrium and kinetic analysis of phosphates adsorption from aqueous solution using waste alum sludge", J. Hazard. Mater., 184(1-3), 746-752. https://doi.org/10.1016/j.jhazmat.2010.08.102.
  2. Barron, V., Herruzo, M. and Torrent, J. (1988), "Phosphate adsorption by aluminous hematites of different shapes", Soil Sci. Soc. Am. J, 52(3), 647-651. https://doi.org/10.2136/sssaj1988.03615995005200030009x.
  3. Bhagowati, B. and Ahamad, K.U. (2019), "A review on lake eutrophication dynamics and recent developments in lake modeling", Ecohydrol. Hydrobiol., 19(1), 155-166. https://doi.org/10.1016/j.ecohyd.2018.03.002.
  4. Chen, J.P., Chua, M.L. and Zhang, B. (2002), "Effects of competitive ions, humic acid, and pH on removal of ammonium and phosphorous from the synthetic industrial effluent by ion exchange resins", Waste Manage, 22(7), 711-719. https://doi.org/10.1016/S0956-053X(02)00051-X.
  5. Cheng, G., Li, Q., Su, Z., Sheng, S. and Fu, J. (2018), "Preparation, optimization, and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands", J. Clean. Prod., 175, 572-581. https://doi.org/10.1016/j.jclepro.2017.12.102.
  6. Choi, M.Y., Lee, J.I., Lee, C.G. and Park, S.J. (2021), "Feasibility of using calcined Patinopecten yessoensis shells for fluoride removal and investigation of the fluoride removal mechanism", Desalin Water Treat, 233, 292-302. https://doi.org/10.5004/dwt.2021.27551.
  7. Christou, C., Philippou, K., Krasia-Christoforou, T. and Pashalidis, I. (2019), "Uranium adsorption by polyvinylpyrrolidone/chitosan blended nanofibers", Carbohydr. Polym., 219, 298-305. https://doi.org/10.1016/j.carbpol.2019.05.041.
  8. Clark, T., Stephenson, T. and Pearce, P.A. (1997), "Phosphates removal by chemical precipitation in a biological aerated filter", Water Res., 31(10), 2557-2563. https://doi.org/10.1016/S0043-1354(97)00091-2.
  9. Currie, J.A., Harrison, N.R., Wang, L., Jones, M.I. and Brooks, M.S. (2007), "A preliminary study of processing seafood shells for eutrophication control", Asia-Pac. J. Chem. Eng., 2(5), 460-467. https://doi.org/10.1002/apj.82.
  10. Dos Reis, G.S., Cazacliu, B.G., Correa, C.R., Ovsyannikova, E., Kruse, A., Sampaio, C.H. and Dotto, G. L. (2020), "Adsorption and recovery of phosphate from aqueous solution by the construction and demolition wastes sludge and its potential use as phosphate-based fertilizer", J. Environ. Chem. Eng., 8(1), 103605 https://doi.org/10.1016/j.jece.2019.103605.
  11. Dos Reis, G.S., Thue, P.S., Cazacliu, B.G., Lima, E.C., Sampaio, C.H., Quattrone, M. and Dotto, G.L. (2020), "Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer", J. Clean. Prod., 256, 120416. https://doi.org/10.1016/j.jclepro.2020.120416.
  12. Du, X., Cheng, Y., Liu, Z., Yin, H., Wu, T., Huo, L. and Shu, C. (2021), "CO2 and CH4 adsorption on different rank coals: A thermodynamics study of surface potential, Gibbs free energy change and entropy loss", Fuel, 283, 118886. https://doi.org/10.1016/j.fuel.2020.118886.
  13. Dwivedi, C., Pathak, S.K., Kumar, M., Tripathi, S.C. and Bajaj, P.N. (2015), "Preparation and characterization of potassium nickel hexacyanoferrate-loaded hydrogel beads for the removal of cesium ions", Environ. Sci. Water Res. Technol., 1(2), 153-160. https://doi.org/10.1039/C4EW00021H.
  14. Fang, L., Wu, B. and Lo, I.M. (2017), "Fabrication of silica-free superparamagnetic ZrO2@ Fe3O4 with enhanced phosphate recovery from sewage: Performance and adsorption mechanism", Chem. Eng. J., 319, 258-267. https://doi.org/10.1016/j.cej.2017.03.012.
  15. Gerke, J. (1993), "Phosphate adsorption by humic/Fe-oxide mixtures aged at pH 4 and 7 and by poorly ordered Fe-oxide", Geoderma, 59(1-4), 279-288. https://doi.org/10.1016/0016-7061(93)90074-U.
  16. Guaya, D., Valderrama, C., Farran, A., Armijos, C. and Cortina, J.L. (2015), "Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite", Chem. Eng. J., 271, 204-213. https://doi.org/10.1016/j.cej.2015.03.003.
  17. Hao, H., Wang, Y. and Shi, B. (2019), "NaLa (CO3)2 hybridized with Fe3O4 for efficient phosphate removal: synthesis and adsorption mechanistic study", Water Res., 155, 1-11. https://doi.org/10.1016/j.watres.2019.01.049.
  18. Hong, S.H., Lyonga, F.N., Kang, J.K., Seo, E.J., Lee, C.G., Jeong, S. and Park, S.J. (2020), "Synthesis of Fe-impregnated biochar from food waste for Selenium (VI) removal from aqueous solution through adsorption: Process optimization and assessment", Chemosphere, 252, 126475. https://doi.org/10.1016/j.chemosphere.2020.126475.
  19. Jia, C., Dai, Y., Chang, J.J., Wu, C., Wu, Z.B. and Liang, W. (2013), "Adsorption characteristics of used brick for phosphates removal from phosphate solution", Desalin. Water Treat., 51(28-30), 5886-5891. https://doi.org/10.1080/19443994.2013.770207.
  20. Jiao, G.J., Ma, J., Li, Y., Jin, D., Guo, Y., Zhou, J. and Sun, R. (2021), "Enhanced adsorption activity for phosphate removal by functional lignin-derived carbon-based adsorbent: Optimization, performance and evaluation", Sci. Total. Environ, 761, 143217. https://doi.org/10.1016/j.scitotenv.2020.143217.
  21. Karaca, S., Gurses, A., Ejder, M. and Acikyildiz, M. (2006), "Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite", J. Hazard. Mater., 128(2-3), 273-279. https://doi.org/10.1016/j.jhazmat.2005.08.003.
  22. Kim, J., Deng, Q. and Benjamin, M.M. (2008), "Simultaneous removal of phosphates and foulants in a hybrid coagulation/membrane filtration system", Water Res., 42(8-9), 2017-2024. https://doi.org/10.1016/j.watres.2007.12.017.
  23. Kumar, E., Bhatnagar, A., Hogland, W., Marques, M. and Sillanpaa, M. (2014), "Interaction of inorganic anions with iron-mineral adsorbents in aqueous media-A review", Adv. Colloid Interf. Sci., 203, 11-21. https://doi.org/10.1016/j.cis.2013.10.026.
  24. Kumar, I.A. and Viswanathan, N. (2018), "A facile synthesis of magnetic particles sprayed gelatin embedded hydrotalcite composite for effective phosphate sorption", J. Environ. Chem. Eng., 6(1), 208-217. https://doi.org/10.1016/j.jece.2017.11.042.
  25. Lee, J.I., Kang, J.K., Oh, J.S., Yoo, S.C., Lee, C.G., Jho, E.H. and Park, S J. (2021), "New insight to the use of oyster shell for removing phosphorus from aqueous solutions and fertilizing rice growth", J. Clean. Prod., 328, 129536. https://doi.org/10.1016/j.jclepro.2021.129536.
  26. Lee, J.I., Kim, J.M., Yoo, S.C., Jho, E.H., Lee, C.G. and Park, S.J. (2022). "Restoring phosphates from water to soil: Using calcined eggshells for P adsorption and subsequent application of the adsorbent as a P fertilizer", Chemosphere, 287, 132267. https://doi.org/10.1016/j.chemosphere.2021.132267.
  27. Lee, J.I., Oh, J.S., Yoo, S.C., Jho, E.H., Lee, C.G. and Park, S.J. (2022), "Removal of phosphorus from water using calcium-rich organic waste and its potential as a fertilizer for rice growth", J. Environ. Chem. Eng., 10(2), 107367. https://doi.org/10.1016/j.jece.2022.107367.
  28. Lima, E.C., Hosseini-Bandegharaei, A., Moreno-Pirajan, J.C. and Anastopoulos, I. (2019), "A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption", J. Mol. Liq., 273, 425-434. https://doi.org/10.1016/j.molliq.2018.10.048.
  29. Liu, H., Sun, X., Yin, C. and Hu, C. (2008), "Removal of phosphate by mesoporous ZrO2", J. Hazard. Mater., 151(2-3), 616-622. https://doi.org/10.1016/j.jhazmat.2007.06.033.
  30. Liu, J., Wan, L., Zhang, L. and Zhou, Q. (2011), "Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber", J. Colloid Interf. Sci., 364(2), 490-496. https://doi.org/10.1016/j.jcis.2011.08.067.
  31. Liu, J., Zhou, Q., Chen, J., Zhang, L. and Chang, N. (2013), "Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber", Chem. Eng. J., 215, 859-867. https://doi.org/10.1016/j.cej.2012.11.067.
  32. Liu, X. and Zhang, L. (2015), "Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies", Powder Technol., 277, 112-119. https://doi.org/10.1016/j.powtec.2015.02.055.
  33. Liu, X., Shen, F. and Qi, X. (2019), "Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw", Sci. Total Environ., 666, 694-702. https://doi.org/10.1016/j.scitotenv.2019.02.227.
  34. Lo Monaco, P.A., Matos, A.T., Eustaquio Junior, V., Ribeiro, I.C. and Teixeira, D.L. (2012), "Utilization of ground clam shells in the adsorption of phosphates and for correction of soil acidity", Engenharia Agricola, 32(5), 866-874. https://doi.org/10.1590/S0100-69162012000500006.
  35. Long, F., Gong, J.L., Zeng, G.M., Chen, L., Wang, X.Y., Deng, J.H. and Zhang, X.R. (2011). "Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide", Chem. Eng. J., 171(2), 448-455. https://doi.org/10.1016/j.cej.2011.03.102.
  36. Luo, W., Hai, F.I., Price, W.E., Guo, W., Ngo, H.H., Yamamoto, K. and Nghiem, L.D. (2016), "Phosphates and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system", Bioresour. Technol., 200, 297-304. https://doi.org/10.1016/j.biortech.2015.10.029.
  37. McBride, M.B. (1997), "A critique of diffuse double layer models applied to colloid and surface chemistry", Clays Clay Miner., 45(4), 598-608. https://doi.org/10.1346/CCMN.1997.0450412.
  38. Morse, G.K., Brett, S.W., Guy, J.A. and Lester, J.N. (1998), "Review: Phosphates removal and recovery technologies", Sci. Total. Environ, 212(1), 69-81. https://doi.org/10.1016/S0048-9697(97)00332-X.
  39. Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Nguyen, T.T., Vu, N.D., Soda, S. and Cao, T.H. (2020), "White hard clam (Meretrix lyrata) shells as novel filter media to augment the phosphates removal from wastewater", Sci. Total. Environ, 741, 140483. https://doi.org/10.1016/j.scitotenv.2020.140483.
  40. Ni, G., Li, Q., Kong, L. and Yu, H. (2015), "Mitochondrial phylogeography of a surf clam Mactra veneriformis in the East China Sea: Genetic homogeneity across two biogeographic boundaries", Biochem. Syst. Ecol., 61, 493-500. https://doi.org/10.1016/j.bse.2015.07.026.
  41. Pan, G., Lyu, T. and Mortimer, R. (2018), "Comment: Closing phosphorus cycle from natural waters: Re-capturing phosphorus through an integrated water-energy-food strategy", J. Environ. Sci., 65, 375-376. https://doi.org/10.1016/j.jes.2018.02.018
  42. Plazinski, W., Rudzinski, W. and Plazinska, A. (2009), "Theoretical models of sorption kinetics including a surface reaction mechanism: A review", Adv. Colloid Interf. Sci., 152(1-2), 2-13. https://doi.org/10.1016/j.cis.2009.07.009.
  43. Ren, Z., Jia, B., Zhang, G., Fu, X., Wang, Z., Wang, P. and Lv, L. (2021), "Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater", Chemosphere, 262, 127895. https://doi.org/10.1016/j.chemosphere.2020.127895.
  44. Saglam, A., Yetissin, F., Demiralay, M. and Terzi, R. (2016), "Chapter 2-Copper Stress and Responses in Plants A2-Ahma, Parvaiz. Plant Metal Interaction",
  45. Saglam, A., Yetissin, F., Demiralay, M. and Terzi, R. (2016), "Chapter 2-copper stress and responses in plants A2-Ahma, Parvaiz", Plant Metal Interact., 21-40. https://doi.org/10.1016/B978-0-12-803158-2.00002-3.
  46. Shafqat, M.N. and Pierzynski, G.M. (2014). "The Freundlich adsorption isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils", Chemosphere, 99, 72-80. https://doi.org/10.1016/j.chemosphere.2013.10.009.
  47. Shin, H., Tiwari, D. and Kim, D.J. (2020), "Phosphate adsorption/desorption kinetics and P bioavailability of Mg- biochar from ground coffee waste", J. Water Process Eng., 37, 101484. https://doi.org/10.1016/j.jwpe.2020.101484.
  48. Sommariva, C., Converti, A. and Del Borghi, M. (1997), "Increase in phosphate removal from wastewater by alternating aerobic and anaerobic conditions", Desalination, 108(1-3), 255-260. https://doi.org/10.1016/S0011-9164(97)00033-7.
  49. Tan, I.A. W., Ahmad, A.L. and Hameed, B.H. (2008). "Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies", J. Hazard. Mater., 154(1-3), 337-346. https://doi.org/10.1016/j.jhazmat.2007.10.031.
  50. Triantafyllidis, K.S., Peleka, E.N., Komvokis, V.G. and Mavros, P.P. (2010), "Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents", J. colloid Interface Sci., 342(2), 427-436. https://doi.org/10.1016/j.jcis.2009.10.063.
  51. Unuabonah, E.I., Adebowale, K.O. and Olu-Owolabi, B.I. (2007), "Kinetic and thermodynamic studies of the adsorption of lead (II) ions onto phosphate-modified kaolinite clay", J. Hazard. Mater., 144(1-2), 386-395. https://doi.org/10.1016/j.jhazmat.2006.10.046.
  52. Wang, B., Xin, M., Wei, Q. and Xie, L. (2018), "A historical overview of coastal eutrophication in the China Seas", Mar. Pollut. Bull., 136, 394-400. https://doi.org/10.1016/j.marpolbul.2018.09.044.
  53. Wang, C., Boithias, L., Ning, Z., Han, Y., Sauvage, S., Sanchez-Perez, J.M. and Hatano, R. (2017), "Comparison of Langmuir and Freundlich adsorption equations within the SWAT-K model for assessing potassium environmental losses at basin scale", Agric. Water Manag., 180, 205-211. https://doi.org/10.1016/j.agwat.2016.08.001.
  54. Wang, S., Kong, L., Long, J., Su, M., Diao, Z., Chang, X. and Shih, K. (2018), "Adsorption of phosphates by calcium-flour biochar: Isotherm, kinetic and transformation studies", Chemosphere, 195, 666-672. https://doi.org/10.1016/j.chemosphere.2017.12.101.
  55. Xiong, W., Tong, J., Yang, Z., Zeng, G., Zhou, Y., Wang, D. and Cheng, M. (2017), "Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism", J. colloid Interface Sci., 493, 17-23. https://doi.org/10.1016/j.jcis.2017.01.024.
  56. Yang, F., Zhang, S., Sun, Y., Tsang, D.C., Cheng, K. and Ok, Y.S. (2019). "Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery", J. Hazard. Mater., 365, 665-673. https://doi.org/10.1016/j.jhazmat.2018.11.047.
  57. Yang, Q., Wang, X., Luo, W., Sun, J., Xu, Q., Chen, F. and Zeng, G. (2018), "Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge", Bioresour. Technol., 247, 537-544. https://doi.org/10.1016/j.biortech.2017.09.136.
  58. Ye, Z.L., Chen, S.H., Wang, S.M., Lin, L.F., Yan, Y.J., Zhang, Z.J. and Chen, J.S. (2010), "Phosphates recovery from synthetic swine wastewater by chemical precipitation using response surface methodology", J. Hazard. Mater., 176(1-3), 1083-1088. https://doi.org/10.1016/j.jhazmat.2009.10.129.
  59. Yeoman, S., Stephenson, T., Lester, J.N. and Perry, R. (1988), "The removal of phosphates during wastewater treatment: A review", Environ. Pollut., 49(3), 183-233. https://doi.org/10.1016/0269-7491(88)90209-6.
  60. Yin, H. and Kong, M. (2014), "Simultaneous removal of ammonium and phosphate from eutrophic waters using natural calcium-rich attapulgite-based versatile adsorbent", Desalination, 351, 128-137. https://doi.org/10.1016/j.desal.2014.07.029.
  61. Yu, J.H., Song, J.H., Choi, M.C. and Park, S.W. (2009), "Effects of water temperature change on immune function in surf clams, Mactra veneriformis (Bivalvia: Mactridae)", J. Invertebr. Pathol., 102(1), 30-35. https://doi.org/10.1016/j.jip.2009.06.002.
  62. Zhang, M., Song, G., Gelardi, D.L., Huang, L., Khan, E., Masek, O. and Ok, Y.S. (2020), "Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water", Water Res., 186, 116303. https://doi.org/10.1016/j.watres.2020.116303.