DOI QR코드

DOI QR Code

Fast UAV Deployment in Aerial Relay Systems to Support Emergency Communications

위급상황 통신 지원용 공중 통신중계기의 빠른 배치 기법

  • Received : 2022.11.17
  • Accepted : 2022.12.06
  • Published : 2023.01.31

Abstract

An aerial relay system utilizing an unmanned aerial vehicle(UAV) or drone is addressed for event-driven operations such as temporary communication services for disaster affected area, military and first responder support. UAV relay system (URS) targets to provide a reliable communication service to a remote user equipment or an operator, therefore, a fast UAV placement to guarantee a minimum quality of service(QoS) is important when an operation is requested. Researches on UAV utilization in communication systems mostly target to derive the optimal position of UAV to maximize the performance, however, fast deployment of UAV is much more important than optimal placement under emergency situations. To this end, this paper derives the feasible area for UAV placement, investigates the effect of performance requirements on that area, and suggests UAV placement to certainly guarantee the performance requirements. Simulation results demonstrate that the feasible area derived in this paper matches that obtained by an exhaustive search.

무인항공기 또는 드론(UAV or Drone)을 활용한 공중 통신중계기는 재난피해 지역, 군 작전 지역, 응급상황 발생 시 등의 임시 통신 서비스 지원에 활용되고 있다. 무인항공기를 활용한 공중 통신중계기는 원격 사용자 또는 임무 수행자에게 안정적인 통신 서비스를 제공하는 것을 목표로 하므로 최소 성능 요구사항을 보장하는 빠른 무인항공기의 배치가 중요하다. 무인항공기를 통신 시스템에서 활용하는 연구에서는 통신 성능을 극대화하는 무인항공기의 최적위치를 찾는 연구가 대부분이나, 위급상황 시에는 최적 위치보다는 무인항공기 배치 가능 영역을 빠르게 도출하고 통신 지원을 위한 빠른 배치가 더 중요하다. 본 논문에서는 무인항공기를 공중 통신중계기로 활용 시 각 상황에 따라 요구되는 통신 성능을 보장하는 무인항공기 배치 가능 영역을 도출하고, 이론적 분석을 통해 얻은 결과를 시뮬레이션 완전 탐색을 통해 검증하고자 한다.

Keywords

Acknowledgement

This paper was supported by the Semyung University Research Grant of 2022.

References

  1. Y. Zeng, R. Zhang, and T. J. Lim, "Wireless Communications with Unmanned Aerial Vehicles: Opportunities and Challenges," IEEE Communications Magazine, vol. 54, no. 5, pp. 36-42, May 2016. DOI: 10.1109/MCOM.2016.7470933.
  2. A. Al-Hourani, S. Kandeepan, and S. Lardner, "Optimal LAP Altitude for Maximum Coverage," IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569-572, Dec. 2014. DOI: 10.1109/LWC.2014.2342736.
  3. J. Baek, S. I. Han, and Y. Han, "Optimal Resource Allocation for Non-Orthogonal Transmission in UAV Relay Systems," IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 356-359, Jun. 2018. DOI: 10.1109/LWC.2017.2778073.
  4. K. G. Panda, S. Das, D. Sen, and W. Arif, "Design and Deployment of UAV-Aided Post-Disaster Emergency Network," IEEE Access, vol. 7, pp. 102985-102999, Jul. 2019. DOI: 10.1109/ACCESS.2019.2931539.
  5. S. I. Han, "Survey on UAV Deployment and Trajectory in Wireless Communication Networks: Applications and Challenges," Information, vol. 13, no. 8, Aug. 2022. DOI: 10.3390/info13080389.
  6. B. Li, Z. Fei, and Y. Zhang, "UAV Communications for 5G and Beyond: Recent Advances and Future Trends," IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2241-2263, Apr. 2019. DOI: 10.1109/JIOT.2018.2887086.
  7. L. Zhang, H. Zhao, S. Hou, Z. Zhao, H. Xu, X. Wu, Q. Wu, and R. Zhang, "A Survey on 5G Millimeter Wave Communications for UAV-Assisted Wireless Networks," IEEE Access, vol. 7, pp. 117460-117504, Jul. 2019. DOI: 10.1109/ACCESS.2019.2929241.
  8. M. Samir, S. Sharafeddine, C. M. Assi, T. M. Nguyen, and A. Ghrayeb, "UAV Trajectory Planning for Data Collection from Time-Constrained IoT Devices," IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 34-46, Jan. 2020. DOI: 10.1109/TWC.2019.2940447.
  9. D. -H. Tran, V. -D. Nguyen, S. Chatzinotas, T. X. Vu, and B. Ottersten, "UAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization," IEEE Transactions on Wireless Communications, vol. 21, no. 3, pp. 1621-1637, Mar. 2022. DOI: 10.1109/TWC.2021.3105821.