DOI QR코드

DOI QR Code

Effect of sword bean (Canavalia ensiformis) fermentation filtrate on the antioxidant, anti-inflammatory, and antimicrobial activities

작두콩(Canavalia ensiformis) 발효액이 항산화, 항염증 및 항균 활성에 미치는 영향

  • Hye-Lim Jang (Department of Food and Nutrition, Dong-eui University)
  • Received : 2023.10.05
  • Accepted : 2023.11.06
  • Published : 2023.12.30

Abstract

In the present study, various experiments were performed to evaluate the biological activities, such as the antioxidant, anti-inflammation, and antimicrobial activities of sword bean (Canavalia ensiformis) fermentation filtrate by Lactobacillus plantarum (L. plantarum) and Lactobacillus brevis (L. brevis). Total polyphenol (TPC) and flavonoid contents (TFC) of sword bean were significantly decreased after fermentation regardless of Lactobacillus sp. (p<0.05). The DPPH radical scavenging activity of sword beans also decreased after fermentation. However, nitric oxide (NO) radical scavenging activity conspicuous increased after fermentation (p<0.001) in a treated concentration-dependent manner, and the effect for L. brevis was higher than for L. plantarum. In addition, the sword bean fermentation filtrate showed a strong inhibitory effect against Pseudomonas aeruginosa, Staphylococcus sp., and Escherichia coli. Cell cytotoxicity was not exhibited in all experimental groups (data not shown). These findings suggest that the sword bean fermentation filtrate may be used effectively in various industries due to its high anti-inflammatory and antimicrobial activities.

본 연구는 발효에 의한 생리기능성을 조사하여 기능성 식품 소재 개발을 위한 기초자료를 제공하고자 Lactobacillus 속을 이용한 작두콩 발효액을 제조하여 항산화, 항염증, 항균 활성을 평가하였다. 총폴리페놀 및 플라보노이드 함량은 균주의 종류에 상관없이 발효 후 유의적으로 낮은 결과를 보였으며(p<0.05), 항산화 활성을 측정한 DPPH 라디칼 소거 활성 또한 발효에 따른 효과가 나타나지 않았다. 그러나 NO 소거 활성으로 항염증 활성을 측정한 결과, 발효 후 농도 의존적으로 증가하는 것을 확인하였으며, L. plantarum로 발효한 발효액보다 L. brevis로 발효한 발효액의 항염증 활성이 더 높았음을 확인하였다. 작두콩 발효액의 항균 활성을 측정한 결과, 녹농균인 Pseudomonas aeruginosa, 포도상구균인 Staphylococcus sp., 대장균인 Escherichia coli에 대한 억제 효과가 우수하였으며, 세포 독성 측정 결과, 모든 실험군에서 대식세포인 RAW 264.7에 대한 독성을 보이지 않았다. 이와 같은 결과는 발효에 따른 항염증 및 항균 활성이 증가하였음을 보여주었으며, 이를 토대로 다양한 바이오 및 식품산업 분야에 효과적으로 활용될 수 있을 것으로 생각된다. 다만 추후에는 발효 조건의 확립과 항염증 및 항균 활성에 대한 정확한 메커니즘 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Adebo OA, Njobeh PB, Kayitesi E. Fermentation by Lactobacillus fermentum strains (singly and in combination) enhances the properties of ting from two whole grain sorghum types. J Cereal Sci, 82, 49-56 (2018)
  2. Ahn YH, Oh G, Lee HJ, Kim HJ, Gwon MJ, Woo EJ, Kwon SC. A study on the antioxidant activity before and after fermentation of artichoke lactic acid bacteria fermentation. JKAIS, 22, 407-414 (2021) https://doi.org/10.5762/KAIS.2021.22.9.407
  3. Ammar RB, Bhouri W, Sghaier MB, Boubaker J, Skandrani I, Neffati A, Bouhlel I, Kilani S, Mariotte A, Chekir-Ghedira L, Dijoux-Franca M, Ghedira K. Antioxidant and free radical-scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L. (Rhamnaceae): A structure-activity relationship study. Food Chem, 116, 258-264 (2009) https://doi.org/10.1016/j.foodchem.2009.02.043
  4. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  5. Choi J, Lee S, Park YS. Anti-diabetic effect of mulberry leaf extract fermented with Lactobacillus plantarum. Korean J Food Sci Technol, 52, 191-199 (2020)
  6. Choi MH, Kim KH, Yook HS. Antioxidant and antibacterial activity of premature mandarin. J Korean Soc Food Sci Nutr, 48, 622-629 (2019) https://doi.org/10.3746/jkfn.2019.48.6.622
  7. Choi MH, Yang SH, Kim DS, Shin HJ. Comparative analysis of biological activity between domestic Cudrania tricuspidata fruit extract and fermented fruit extract using Lactobacillus plantarum. KSBB J, 36, 247-253 (2021) https://doi.org/10.7841/ksbbj.2021.36.4.247
  8. Chung J, Lee J, Ha D. Antimicrobial activities of sword bean (Canavalia gladiata) extracts against food poisoning bacteria. J Food Hyg Saf, 29, 376-382 (2014) https://doi.org/10.13103/JFHS.2014.29.4.376
  9. Davis WB. Determination of flavanones in citrus fruits. Anal Chem, 19, 476-478 (1947) https://doi.org/10.1021/ac60007a016
  10. Faheina-Martins GV, da Silveira AL, Cavalcanti BC, Ramos MV, Moraes MO, Pessoa C, Araujo DA. Antiproliferative effects of lectins from Canavalia ensiformis and Canavalia brasiliensis in human leukemia cell lines. Toxicol in Vitro, 26, 1161-1169 (2012) https://doi.org/10.1016/j.tiv.2012.06.017
  11. Herrmann K, Nagel CW. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr, 28, 315-347 (1989) https://doi.org/10.1080/10408398909527504
  12. Joo SJ, Choi KJ, Kim KS, Lee JW, Park SK. Characteristics of yogurt prepared with 'jinpum' bean and sword bean (Canavalin gladiata). Korean J Postharvest Sci Technol, 8, 308-312 (2001)
  13. Kang SY, Kim KH, Yook HS. Antioxidant activities of fermented Ulva pertusa Kjellman. J Korean Soc Food Sci Nutr, 49, 940-945 (2020)
  14. Kim CW, Bae EJ, Kang JE, Choi HS, Jeong ST. Antibacterial and antioxidative activities of licorice extracts fermented with Nuruk molds. Korean J Food Preserv, 25, 830-836 (2018) https://doi.org/10.11002/kjfp.2018.25.7.830
  15. Kim JP, Lee HH, Moon JH, Ha DR, Kim ES, Kim JH, Seo KW. Isolation and identification of antioxidants from methanol extract of sword bean (Canavalia gladiata). Korean J Food Sci Technol, 45, 777-784 (2013a) https://doi.org/10.9721/KJFST.2013.45.6.777
  16. Kim KH, Kim DM, Byun MW, Yun YS, Yook HS. Antioxidant activity of Panax ginseng flower-buds fermented with various microorganisms. J Korean Soc Food Sci Nutr, 42, 663-669 (2013b) https://doi.org/10.3746/jkfn.2013.42.5.663
  17. Kwon MS, Mun OJ, Bae MJ, Lee SG, Kim M, Lee SH, Yu KH, Kim YY, Kong CS. Anti-inflammatory activity of ethanol extracts from Hizikia fusiformis fermented with lactic acid bacteria in LPS-stimulated RAW 264.7 macrophages. J Korean Soc Food Sci Nutr, 44, 1450-1457 (2015) https://doi.org/10.3746/jkfn.2015.44.10.1450
  18. Lee HJ. Lighting of health promotion using fermentation. Korean Soc Wel, 14, 469-478 (2019) https://doi.org/10.21097/ksw.2019.05.14.2.469
  19. Lee HJ, Park SE, Choi JH, Kim KM. Biological activity of Brassica oleracea var. capitata fermented with Lactobacillus plantarum. Korean J Food Preserv, 29, 241-253 (2022) https://doi.org/10.11002/kjfp.2022.29.2.241
  20. Lee JY, Jhee KH, Yang SA. Antibacterial and anti-inflammatory effects of essential oil from the Magnolia kobus flower. J Life Sci, 30, 278-284 (2020)
  21. Lee JY, Oh SB, Choi NS, Park YW, Kang DO. Biological activity of Viola mandshurica fermented with Bacillus methylotrophicus CBMB205 and Leuconostoc pseudomesenteroides NRIC1777. J Life Sci, 29, 239-247 (2019)
  22. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases: The challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol, 139, S3-S15 (2010) https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
  23. Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, Edwards JE. Guidelines for treatment of candidiasis. Clin Infect Dis, 38, 161-189 (2004) https://doi.org/10.1086/380796
  24. Park MJ, Park HJ, Lee EH, Jung HY, Cho YJ. Anti-inflammatory effect potentials of ethanol extracts from fermentated Caryopteris incana by Lactobacillus plantarum on induced to LPS with Raw 264.7 cell. J Appl Biol Chem, 61, 141-150 (2018a) https://doi.org/10.3839/jabc.2018.021
  25. Park SB, Song HM, Kim HN, Park GH, Son HJ, Um Y, Park JA, Jeong JB. Anti-inflammatory effect of Biji (soybean curd residue) on LPS-stimulated RAW 264.7 cells. Korean J Plant Res, 31, 117-123 (2018b)
  26. Park SC. Characteristics of fermented omija (Schizandra chinensis Baillon) sugar treatment extracts by Lactobacillus sp. Korean J Microbiol, 50, 60-66 (2014) https://doi.org/10.7845/kjm.2014.4006
  27. Park YE, Kim BH, Yoon YC, Kim JK, Lee JH, Kwon GS, Hwang HS, Lee JB. Total polyphenol contents, flavonoid contents, and antioxidant activity of roasted-flaxseed extracts based on lactic-acid bacteria fermentation. J Life Sci, 28, 547-554 (2018c)
  28. Seo HS. The experimental study on anti-bacterial potency of Coptidis rhizoma extract compare with quantity on Pseudomonas aeruginosa. J Pharmacopuncture, 10, 17-21 (2007) https://doi.org/10.3831/KPI.2007.10.1.017
  29. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult, 16, 144-158 (1965) https://doi.org/10.5344/ajev.1965.16.3.144
  30. Song HN, Park MS. Analysis of biological activities and functional components in fermented Gastrodia elata blume by Lactobacillus. J Korean Soc Food Sci Nutr, 47, 32-38 (2018) https://doi.org/10.3746/jkfn.2018.47.1.032
  31. Song YJ, Park SH, You JY, Cho YS, Oh KH. Antibacterial activity against food-poisoning causing bacteria and characterization of Lactobacillus plantarum YK-9 isolated from Kimchi. KSBB J, 24, 273-278 (2009)
  32. Wyszynska M, Nitsze-Wierzba M, Czelakowska A, Kasperski J, Zywiec J, Skucha-Nowak M. An evidence-based review of application devices for nitric oxide concentration determination from exhaled air in the diagnosis of inflammation and treatment monitoring. Molecules, 27, 4279 (2022)
  33. Yusof S, Ghazali HM, King GS. Naringin content in local citrus fruits. Food Chem, 37, 113-121 (1990) https://doi.org/10.1016/0308-8146(90)90085-I
  34. Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, OToole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Ganzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol, 70, 2782-2858 (2020) https://doi.org/10.1099/ijsem.0.004107