DOI QR코드

DOI QR Code

Influence of cell-wall degrading enzyme treatment and Saccharomyces cerevisiae fermentation on the antioxidant and antibacterial activities of green tea leaf

세포벽 분해 효소 처리 및 Saccharomyces cerevisiae 발효가 녹차 잎의 항산화 및 항균 활성에 미치는 영향

  • Dong-Wook Lim (Food Functionality Research Division, Korea Food Research Institute) ;
  • Ga-Yang Lee (Food Convergence Research Division, Korea Food Research Institute) ;
  • Min-Jeong Jung (Food Convergence Research Division, Korea Food Research Institute) ;
  • Byoung-Mok Kim (Food Convergence Research Division, Korea Food Research Institute) ;
  • Joon-Young Jun (Food Convergence Research Division, Korea Food Research Institute)
  • 임동욱 (한국식품연구원 식품기능연구본부) ;
  • 이가양 (한국식품연구원 식품융합연구본부) ;
  • 정민정 (한국식품연구원 식품융합연구본부) ;
  • 김병목 (한국식품연구원 식품융합연구본부) ;
  • 전준영 (한국식품연구원 식품융합연구본부)
  • Received : 2023.11.28
  • Accepted : 2023.12.12
  • Published : 2023.12.30

Abstract

This study was conducted to suggest an extraction method for preparing the extract from green tea leaves that possess enhanced antioxidant and antibacterial activities. Different ethanol concentrations were tested to recover phenolics and flavonoids, and 50% ethanol was the best under heat treatment (121℃, 15 min). The ethanol extract exhibited excellent DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and growth inhibition against B. cereus, B. licheniformis, S. aureus subsp. aureus, and A. hydrophila subsp. hydrophila. To enhance the antioxidant and antibacterial activities, cell-wall degrading enzymes (2.5% cellulose+2.5% pectinase, v/w dry sample) treatment and Saccharomyces cerevisiae fermentation were applied singly or in combination. The enzymatic treatment of green tea leaves notably increased extraction yield. However, the antioxidant and antibacterial activities of the extract were lower than those of the control (heat-treated 50% ethanol extract). In contrast, the yeast fermentation alone did not affect the yield, but enhanced antioxidant and antibacterial activities, contributing to the increase in the extract's total phenolic and flavonoid contents.

본 연구에서는 항산화와 항균 활성 등이 우수한 녹차 잎을 대상으로 관련 물질 회수에 적합한 추출 용매의 농도 설정과 세포벽 분해 효소 처리 및 효모 발효가 활성을 높이는데 도움을 줄 수 있는지 살펴보았다. 입도 약 4-10 ㎛의 녹차 분말을 사용하여 추출물을 제조할 때, 다양한 에탄올 농도 가운데 50% 에탄올을 추출 용매로 하고 가열 처리 (121℃, 15 min)를 진행할 경우 높은 수율과 DPPH 라디칼 소거능 및 항균 활성을 나타내었다. 이 추출물은 B. cereus, B. licheniformis, S. aureus subsp. aureus 및 A. hydrophila subsp. hydrophila 에서 항균 활성을 나타내었다. 녹차 잎 분말에 효소 처리 및 효모 발효 진행 시 최종 녹차 잎 추출물의 항산화와 항균 활성에 미치는 영향을 조사하기 위해, 효소 처리에는 cellulase와 pectinase를 혼합(2.5% + 2.5%)하여 사용하였고, 효모 발효에는 S. cerevisiae 가 사용되었다. 녹차 잎을 효소 처리할 경우 추출물의 수율은 증가되었으나, 50% 에탄올 추출물(대조구)에 비해 항산화와 항균 활성은 유의적으로 감소되었다(p<0.05). 그에 반해 효모 발효를 단독으로 진행할 경우 최종 추출물의 수율 증가는 없었지만, 총페놀화합물과 플라보노이드 함량을 높여 항산화와 항균 활성을 높이는데 긍정적으로 작용하였다.

Keywords

Acknowledgement

이 논문은 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구(20220131, 수산식품산업 맞춤형 기술개발)로 이에 감사드립니다.

References

  1. Al Hroob AM, Abukhalil MH, Hussein OE, Mahmoud AM. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother 109, 2155-2172 (2019) https://doi.org/10.1016/j.biopha.2018.11.086
  2. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6, 42 (2017)
  3. AOAC. Official Methods of Analysis. 17th ed, Official Method 950.46, 923.03, 976.05 and 991.36, Association of Official Analytical Chemists, Washington DC, USA (2005)
  4. Avci U. Trafficking of xylan to plant cell walls. Biomass, 2, 188-194 (2022) https://doi.org/10.3390/biomass2030012
  5. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal, 10, 178-182 (2002)
  6. Chung SH, Yoon KH. Antimicrobial activity of extracts and fractions of green tea used for coarse tea. J Korean Soc Food Sci Nutr 37, 1382-1388 (2008) https://doi.org/10.3746/jkfn.2008.37.11.1382
  7. Dewanto V, Wu X, Liu RH. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50, 4959-4964 (2002) https://doi.org/10.1021/jf0255937
  8. Han JH, Seo HS, Chung JD. Development of a natural preservative with antioxidant activity from by-products of food processing. J Korea Soc Waste Manag, 37, 411-418 (2020) https://doi.org/10.9786/kswm.2020.37.6.411
  9. Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res, 52, 39 (2019)
  10. Joung YM, Park SJ, Lee KY, Lee JY, Suk JK, Hwang SY, Park KE, Kang MH. Antioxidative and antimicrobial activities of Lilium species extracts prepared from different aerial parts. Korean J Food Sci Technol 39, 452-457 (2007)
  11. Jun JY, Jung MJ, Jeong IH, Yamazaki K, Kawai Y, Kim BM. Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Mar Drugs, 16, 301 (2018)
  12. Jun JY, Nakajima S, Yamazaki K, Kawai Y, Yasui H, Konishi Y. Isolation of antimicrobial agent from the marine algae Cystoseira hakodatensis . Int J Food Sci Technol, 50, 871-877 (2015) https://doi.org/10.1111/ijfs.12719
  13. Kang JH, Ra CH, Kim SH, Shon HW, Chung HY. Effects of Bactocease treatment on microbial growth and quality of fried fish paste during storage. Food Eng Prog, 26, 19-26 (2022) https://doi.org/10.13050/foodengprog.2022.26.1.19
  14. Kim BK, Kang JH, Oh GH, Hwang JY, Jang SO, Kim M. Antibacterial and antioxidant activity of Chamaecyparis obtusa extracts. J Life Sci, 29, 785-791 (2019)
  15. Li X, Xing Y, Cao L, Xu Q, Li S, Wang R, Jiang Z, Lin H. Effects of six commercial Saccharomyces cerevisiae strains on phenolic attributes, antioxidant activity, and aroma of kiwifruit (Actinidia deliciosa cv.) wine. BioMed Res Int, 2934743 (2017)
  16. Liu Q, Luo L, Zheng L. Lignins: Biosysnthesis and biological functions in plants. Int J Mol Sci, 19, 335 (2018)
  17. Liu S, Zhang Q, Li H, Qiu Z, Yu Y. Comparative assessment of the antibacterial efficacies and mechanisms of different tea extracts. Foods, 11, 620 (2022)
  18. Ministry of Food and Drug Safety (MFDS). 3. Standards and specification for general foods: 4) Hygiene indicator bacteria and foodborne pathogens. Available from: https://various.foodsafetykorea.go.kr/fsd/#/ext/Document/FC?searchNm=%EB%AF%B8%EC%83%9D%EB%AC%BC%20%EA%B8%B0%EC%A4%80&itemCode=FC0A003001002A017. Accessed Nov. 8, 2023.
  19. Namita P, Mukesh R, Vijay KJ. Camellia sinensis (green tea): A Review. Glob J Pharmacol, 6, 52-59 (2012)
  20. Ngadze RT, Verkerk R, Nyanga LK, Fogliano V, Ferracane R, Troise AD, Linnemann AR. Effect of heat and pectinase maceration on phenolic compounds and physicochemical quality of Strychnos cocculoides juice. PLoS ONE, 13, e0202415 (2018)
  21. Oh EJ, Jin YS. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res, 20, foz089 (2020)
  22. Omeje KO, Nnolim NE, Ezema BO, Ozioko JN, Ossai EC, Eze SOO. Valorization of agro-industrial residues for pectinase production by Aspergillus aculeatus : Application in cashew fruit juice clarification. Clean Circ Bioecon, 4, 100038 (2023)
  23. Park KY. Increased health functionality of fermented foods. Food Sci Nutr, 17, 1-8 (2012)
  24. Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A review of the role of green tea (Camellia sinensis ) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients, 11, 474 (2019)
  25. Schadel C, Blochl A, Richter A, Hoch G. Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiol Biochem, 48, 1-8 (2010) https://doi.org/10.1016/j.plaphy.2009.09.008
  26. Shaharam H, Dinani ST, Amouheydari M. Effects of pectinase concentration, ultrasonic time, and pH of an ultrasonic-assisted enzymatic process on extraction of phenolic compounds from orange processing waste. J Food Meas Charact, 13, 487-498 (2019) https://doi.org/10.1007/s11694-018-9962-6
  27. Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chem, 113, 1202-1205 (2009) https://doi.org/10.1016/j.foodchem.2008.08.008
  28. Sigma-Aldrich. Application data sheet of cellulase from Trichoderma reesei C2730. Available from: https://www.sigmaaldrich.com/KR/ko/product/sigma/c2730. Accessed Nov. 10, 2023a.
  29. Sigma-Aldrich. Application data sheet of pectinase from Aspergillus aculeatus P2611. Available from: https://www.sigmaaldrich.com/KR/ko/product/sigma/p2611. Accessed Nov. 10, 2023b.
  30. Stratev D, Odeyemi OA. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: A mini-review. J Infect Public Health, 9, 535-544 (2016) https://doi.org/10.1016/j.jiph.2015.10.006
  31. Taylor PW, Hamilton-Miller JMT, Stapleton PD. Antimicrobial properties of green tea catechins. Food Sci Technol Bull, 2, 71-81 (2005)
  32. Vishnoi H, Bodla RB, Kant R, Bodla RB. Green tea (Camellia sinensis ) and its antioxidant property: A review. Int J Pharm Sci Res, 9, 1723-1736 (2018)
  33. Yoon HH, Chae KS, Son RH, Jung JH. Antioxidant activity and fermentation characteristics of blueberry wine using traditional yeast. J Korean Soc Food Sci Nutr, 44, 840-846 (2015)
  34. Zhang C, Zhu X, Zhang F, Yang X, Ni L, Zhang W, Liu Z, Zhang Y. Improving viscosity and gelling properties of leaf pectin by comparing five pectin extraction methods using green tea leaf as a model material. Food Hydrocoll, 98, 105246 (2020)