DOI QR코드

DOI QR Code

Physicochemical characteristics and volatile profile of novel lemon varieties, Minimon and Jeramon

  • Heejin Kang (Department of Food and Nutrition, Myongji University) ;
  • Sunmee Lee (Department of Food and Nutrition, Daejeon University) ;
  • Jaecheol Kim (School of Bio-Health Convergence, Sungshin Women's University) ;
  • Hyosun Park (Department of Food and Nutrition, Chung-Ang University) ;
  • Suna Kim (Division of Human Ecology, College of Natural Science, Korea National Open University)
  • Received : 2023.09.14
  • Accepted : 2023.10.14
  • Published : 2023.10.30

Abstract

Although most lemons are imported into Korea, their consumption is increasing. Development of domestic varieties of Jeramon and Minimon is currently underway in an effort to meet the increasing demand for fresh lemons. In this study, an analysis of the physicochemical characteristics of Jeramon and Minimon, including their flavor components and antioxidant properties, was conducted. The results revealed that these new varieties of Korean lemon can be regarded as good sources of antioxidants and phytochemicals. Compared to Sunkist, the most consumed lemon variety in Korea, Minimon contained more than twice as much β-cryptoxanthin, and the content of L-ascorbic acid was more than three-four-fold higher in both Minimon and Jeramon. In addition, results from measurement of DPPH and ABTS radical scavenging activities indicated that Jeramon extract exhibited the highest antioxidant activity. In the volatile profile analysis, the profiles of volatile components showed high similarity among the three lemon samples, and the composition ratio was largely dominated by terpenoids. A markedly higher ratio of d-limonene and thymol was detected in the Minimon variety compared with that in the other two varieties. Collectively, the findings from this study on Korean lemon varieties provide a basis as well as valuable guidance for breeding domestic lemon varieties.

Keywords

References

  1. Addi M, Elbouzidi A, Malika A, Tungmunnithum D, Elamrani A, Hano C. Anoverview of bioactive flavonoids from citrus fruits. Appl Sci, 12, 29 (2022)
  2. Agricultural Technology. Available from: https://lib.rda.go.kr/search/mediaView.do?mets_no=000000315992 Accessed Jul. 26, 2023.
  3. AL-Jabri NN, Hossain MA. Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni-Suef Univ J Basic Appl Sci, 3, 247-253 (2014)
  4. Alquezar B, Rodrigo MJ, Zacarias L. Carotenoid biosynthesis and their regulation in citrus fruits. Tree For Sci Biotech, 2, 23-35 (2008)
  5. Arfa AB, Combes S, Preziosi-Belloy L, Gontard N, Chalier P. Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol, 43, 149-154 (2006)
  6. Beltran Sanahuja A, Valdes Garcia A. New trends in the use of volatile compounds in food packaging. Polymers, 13, 1053 (2021)
  7. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Food Sci Technol, 28, 25-30 (1995)
  8. Burdock GA. Fenaroli's Handbook of Flavor Ingredients. 6th ed, CRC Press, Boca Raton, FL, USA, p 1910-1911 (2009)
  9. Del Nobile MA, Conte A, Incoronato AL, Panza O. Antimicrobial efficacy and release kinetics of thymol from zein films. J Food Eng, 89, 57-63 (2008) https://doi.org/10.1016/j.jfoodeng.2008.04.004
  10. Denkova-Kostova R, Teneva D, Tomova T, Goranov B, Denkova Z, Shopska V, Slavchev A, HristovaIvanova Y. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume). Z Naturforsch C J Biosci, 76, 175-185 (2020) https://doi.org/10.1515/znc-2020-0126
  11. Espina L, Somolinos M, Loran S, Conchello P, Garcia D, Pagan R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control, 22, 896-902 (2011) https://doi.org/10.1016/j.foodcont.2010.11.021
  12. Frederick D, Larry J. Citrus Growing in Florida. University Press of Florida, Gainesville, FL, USA (2009)
  13. Hong YS, Lee YS, Kim KS. Comparison of volatile flavor compounds of yuzu, kumquat, lemon and lime. Korean J Food Preserv, 24, 394-405 (2017) https://doi.org/10.11002/kjfp.2017.24.3.394
  14. Horvathova E, Navarova J, Galova E, Sevcovicova A, Chodakova L, Snahnicanova Z, Melusova M, Kozics K, Slamenova D. Assessment of antioxidative, chelating, and DNA-protective effects of selected essential oil components (eugenol, carvacrol, thymol, borneol, eucalyptol) of plants and intact Rosmarinus officinalis oil. J Agric Food Chem, 62, 6632-6639 (2014) https://doi.org/10.1021/jf501006y
  15. Hwang JR, Hwang IK, Kim S. Quantitative analysis of various carotenoids from different colored paprika using UPLC. Korean J Food Sci Technol, 47, 1-5 (2015) https://doi.org/10.9721/KJFST.2015.47.1.1
  16. Jiang H, Zhang W, Xu Y, Chen L, Cao J, Jiang W. An advance on nutritional profile, phytochemical profile, nutraceutical properties, and potential industrial applications of lemon peels: A comprehensive review. Trends Food Sci, 124, 219-236 (2022) https://doi.org/10.1016/j.tifs.2022.04.019
  17. Jiao Y, Reuss L, Wang Y. β-Cryptoxanthin: Chemistry, occurrence, and potential health benefits. Curr Pharmacol Rep, 5, 20-34 (2019) https://doi.org/10.1007/s40725-019-00085-4
  18. Kamatou GPP, Viljoen AM. Linalool: A review of a biologically active compound of commercial importance. Nat Prod Commun, 3, 1183-1192 (2008) https://doi.org/10.1177/1934578X0800300727
  19. Karabagias IK. Volatile compounds of freshly prepared lemon juice from the region of Kalamata. SM Anal Bioanal Tech, 2, 1013 (2017)
  20. Kato M, Ikoma Y, Matsumoto H, Sugiura H, Hyodo H, Yano M. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol, 134, 824-837 (2004) https://doi.org/10.1104/pp.103.031104
  21. Kim S, Park H, Kim J, Moon B. Effect of main vegetable ingredient on the glucosinolate, carotenoids, capsaicinoids, chlorophylls, and ascorbic acid content of kimchis. J Food Compos Anal, 110, 104523 (2022a)
  22. Kim SS, Park SM, Park Y, Joa JH, Kim M, Yun SK, Han SG. Phytochemical profiles of Citrus hybrid kanpei and Citrus reticulata natsumi: Analysis of volatile and non-volatile components. Korean J Food Preserv, 29, 1-12 (2022b) https://doi.org/10.11002/kjfp.2022.29.1.1
  23. Lemos VC, Reimer JJ, Wormit A. Color for life: Biosynthesis and distribution of phenolic compounds in pepper (Capsicum annuum). Agriculture, 9, 81 (2019)
  24. Lota ML, de Rocca Serra D, Tomi F, Jacquemond C, Casanova J. Volatile components of peel and leaf oils of lemon and lime species. J Agric Food Chem, 50, 796-805 (2002) https://doi.org/10.1021/jf010924l
  25. Mahmoud AM, Hernandez Bautista RJ, Sandhu MA, Hussein OE. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid Med Cell Longev, 2019, 1-19 (2019)
  26. Marti N, Mena P, Canovas J, Micol Saura D. Vitamin C and the role of citrus juices as functional food. Nat Prod Commun, 4, 677-700 (2009)
  27. Matsumoto H, Ikoma Y, Kato M, Kuniga T, Nakajima N, Yoshida T. Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J Agric Food Chem, 55, 2356-2368 (2007) https://doi.org/10.1021/jf062629c
  28. Ministry of Culture, Sports and Tourism. Available from: https://www.korea.kr/briefing/pressReleaseView.do?newsId=156319987 (2019). Accessed Jun. 30, 2023.
  29. Nagy S. Vitamin C contents of citrus fruit and their products: A review. J Agric Food Chem, 28, 8-18 (1980) https://doi.org/10.1021/jf60227a026
  30. Nour V, Trandafir I, Ionica ME. HPLC organic acid analysis in different citrus juices under reversed phase conditions. Not Bot Horti Agrobot Cluj Napoca, 38, 44-48 (2010)
  31. Penniston KL, Nakada SY, Holmes RP, Assimos DG. Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. J Endourol, 22, 567-570 (2008) https://doi.org/10.1089/end.2007.0304
  32. Perera CO, Perera AD. Technology of processing of horticultural crops. In: Handbook of Farm, Dairy and Food Machinery Engineering, Kutz M (Editor), Elsevier, Amsterdam, The Netherlands, p 299-351 (2019)
  33. Pichersky E, Noel JP, Dudareva N. Biosynthesis of plant volatiles: Nature's diversity and ingenuity. Science, 311, 808-811 (2006) https://doi.org/10.1126/science.1118510
  34. Prior RL. Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr, 78, 570S-578S (2003) https://doi.org/10.1093/ajcn/78.3.570S
  35. Quitmann H, Fan R, Czermak P. Acidic organic compounds in beverage, food, and feed production. Adv Biochem Eng Biotechnol, 143, 91-141 (2014) https://doi.org/10.1007/10_2013_262
  36. Ramarathnam N, Osawa T, Ochi H, Kawakishi S. The contribution of plant food antioxidants to human health. Trends Food Sci Technol, 6, 75-82 (1995) https://doi.org/10.1016/S0924-2244(00)88967-0
  37. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  38. Sarpras M, Ahmad I, Rawoof A, Ramchiary N. Comparative analysis of developmental changes of fruit metabolites, antioxidant activities and mineral elements content in Bhut jolokia and other Capsicum species. Food Sci Technol, 105, 363-370 (2019) https://doi.org/10.1016/j.lwt.2019.02.020
  39. Schreiner L, Bauer J, Ortner E, Buettner A. Structure-odor activity studies on derivatives of aromatic and oxygenated monoterpenoids synthesized by modifying p-Cymene. J Nat Prod, 83, 834-842 (2020) https://doi.org/10.1021/acs.jnatprod.9b00339
  40. Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant J, 54, 712-732 (2008) https://doi.org/10.1111/j.1365-313X.2008.03446.x
  41. Sun Y, Qiao L, Shen Y, Jiang P, Chen J, Ye X. Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. J Food Sci, 78, C37-C42 (2013) https://doi.org/10.1111/j.1750-3841.2012.03002.x
  42. Suntres ZE, Coccimiglio J, Alipour M. The bioactivity and toxicological actions of carvacrol. Crit Rev Food Sci Nutr, 55, 304-318 (2015) https://doi.org/10.1080/10408398.2011.653458
  43. Wang M, Li J, Rangarajan M, Shao Y, LaVoie EJ, Huang TC, Ho CT. Antioxidative phenolic compounds from sage (Salvia officinalis). J Agric Food Chem, 46, 4869-4873 (1998) https://doi.org/10.1021/jf980614b
  44. Woo JK, Yun SH, Yi KU, Park YC, Lee HY, Kim M, Lee Y, Song KJ, Kim HB. Identification of citrus varieties bred in Korea using microsatellite markers. Hortic Sci Technol, 38, 374-384 (2020) https://doi.org/10.7235/HORT.20200036
  45. Yokoyama H, White MJ. Carotenoids in the flavedo of marsh seedless grapefruit. J Agric Food Chem, 15, 693-696 (1967) https://doi.org/10.1021/jf60152a041
  46. Zhang LL, Lv S, Xu JG, Zhang LF. Influence of drying methods on chemical compositions, antioxidant and antibacterial activity of essential oil from lemon peel. Nat Prod Res, 32, 1184-1188 (2018) https://doi.org/10.1080/14786419.2017.1320791
  47. Zhang M, Xu Q, Duan C, Qu W, Wu Y. Comparative study of aromatic compounds in young red wines from cabernet sauvignon, cabernet franc, and cabernet gernischet varieties in China. J Food Sci, 7, C248-C252 (2007) https://doi.org/10.1111/j.1750-3841.2007.00357.x