DOI QR코드

DOI QR Code

Method validation for quantitative analyzing aflatoxin productivity in Aspergillus sp. isolated from soybean paste

  • SeongEui Yoo (Department of Agrofood Resources, Fermented and Processed Food Science Division, National Institute of Agricultural Science, RDA) ;
  • WooSoo Jeong (Department of Agrofood Resources, Fermented and Processed Food Science Division, National Institute of Agricultural Science, RDA) ;
  • Soo-Hwan Yeo (Department of Agrofood Resources, Fermented and Processed Food Science Division, National Institute of Agricultural Science, RDA) ;
  • So-Young Kim (Department of Agrofood Resources, Fermented and Processed Food Science Division, National Institute of Agricultural Science, RDA)
  • Received : 2022.12.05
  • Accepted : 2022.12.26
  • Published : 2023.02.28

Abstract

Non-aflatoxigenic Aspergillus oryzae and aflatoxigenic A. flavus cannot be clearly identified by partial sequencing of the internal transcribed spacer (ITS) and 18S ribosomal ribonucleic acid (18S rRNA) regions. This study aimed to compare the accuracy among three aflatoxin detection methods using ultra-performance liquid chromatography (UPLC), high-performance liquid chromatography (HPLC), and an enzyme-linked immunosorbent assay (ELISA) kit and to select the non-aflatoxigenic Aspergillus sp. isolated from soybean paste. All analytical methods were suitable according to the international standards of Codex Alimentarius FAO-WHO (CODEX) or the Ministry of Food and Drug Safety (MFDS). UPLC exhibited the best of limit of detection (LOD) and limit of quantification (LOQ). Based on UPLC, HPLC, and the ELISA kit assay, the P5 and P7 strains isolated from soybean paste had 1,663.49, 1,468.12, and >20 ㎍/kg and 1,470.08, 1,056.73, and >20 ㎍/kg, respectively, detected and re-identified as A. flavus. In contrast, the P3 and P4 strains (A. oryzae), which were detected below the MFDS standards in all assays, were confirmed as non-aflatoxigenic fungi. Among the methods evaluated for quantitative analysis of aflatoxin, UPLC and HPLC are superior in terms of accuracy, and the ELISA kit rapidly detects low concentrations of aflatoxin. Furthermore, this study demonstrates that any Aspergillus sp. isolated for use as a fermentation starter should be analyzed for potential aflatoxin production using UPLC and HPLC for accurate quantitative analysis or ELISA for the rapid detection of low-level concentrations of aflatoxin.

Keywords

Acknowledgement

This study was carried out with the support of the Research Program for Agricultural Science & Technology Development (Project No. PJ01600603), the National Institute of Agricultural Sciences, Rural Development Administration, Korea.

References

  1. Alshannaq AF, Yu JH. A liquid chromatographic method for rapid and sensitive analysis of aflatoxins in laboratory fungal cultures. Toxins, 12, 93 (2020)
  2. Back CG, Lee SY, Jung HY. Molecular phylogenetic analysis of Botrytis cinerea occurring in Korea. Korean J Mycol, 42, 138-143 (2014) https://doi.org/10.4489/KJM.2014.42.2.138
  3. Chang PK, Ehrlich KC. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int J Food Microbiol, 138, 189-199 (2010) https://doi.org/10.1016/j.ijfoodmicro.2010.01.033
  4. Cheong SS, Choi IY, Lee WH. Occurrence of gray mold caused by Botrytis cinerea on common fig in Korea. Korean J Mycol, 41, 38-41 (2013) https://doi.org/10.4489/KJM.2013.41.1.38
  5. Choi JH, Nah JY, Lee MJ, Lim SB, Lee T, Kim J. Diversity and mycotoxin production of Aspergillus flavus in stored peanut. Korean J Mycol, 49, 303-313 (2021)
  6. CODEX. General Standard for Contaminants and Toxins in Food and Feed, CXS 193-1995. p 13-18 (1995)
  7. Eaton DL, Gallagher EP. Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol, 34, 135-172 (1994) https://doi.org/10.1146/annurev.pa.34.040194.001031
  8. Hwang JH, Chun HS, Lee KG. Aflatoxins in foods-analytical methods and reduction of toxicity by physicochemical processes. Appl Biol Chem, 47, 1-16 (2004)
  9. Jorgensen TR. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae. J Food Prot, 70, 2916-2934 (2007) https://doi.org/10.4315/0362-028X-70.12.2916
  10. Jung YJ, Chung SH, Lee HK, Chun HS, Hong SB. Isolation and identification of fungi from a Meju contaminated with aflatoxins. J Microbiol Biotechnol, 22, 1740-1748 (2012)
  11. Kang KJ, Kim HJ, Lee YG, Jung KH, Han SB, Park SH, Oh HY. Administration of mycotoxins in food in Korea. J Food Hyg Safety, 25, 281-288 (2010)
  12. Kim HM. Gray mold on Saintpaulia ionantha caused by Botrytis cinerea in Korea. Res Plant Dis, 17, 75-77 (2011) https://doi.org/10.5423/RPD.2011.17.1.075
  13. Kim JH, Kwon YH, Lee AR, Kim HR, Ahn BH. Manufacture of koji using fungi isolation from Nuruk and identification of koji molds. Kor J Mycol, 40, 187-190 (2012) https://doi.org/10.4489/KJM.2012.40.4.187
  14. Kim M, Kim YS. Detection of foodborne pathogens and analysis of aflatoxin levels in home-made Doenjang samples. Prev Nutr Food Sci, 17, 172-176 (2012) https://doi.org/10.3746/pnf.2012.17.2.172
  15. Kjarbolling I, Vesth T, Frisvad JC, Nybo JL, Theobald S, Kildgaard S, Petersen TI, Kuo A, Sato A, Lyhne EK. A comparative genomics study of 23 Aspergillus species from section Flavi. Nat Commun, 11, 1-12 (2020)
  16. Kwon DY, Hong SM, Ahn IS, Kim MJ, Yang HJ, Park S. Isoflavonoids and peptides from Meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutr, 27, 244-252 (2011a) https://doi.org/10.1016/j.nut.2010.02.004
  17. Kwon JH, Cheon MG, Choi O, Kim J. First report of Botrytis cinerea as a postharvest pathogen of blueberry in Korea. Mycobiology, 39, 52-53 (2011b) https://doi.org/10.4489/MYCO.2011.39.1.052
  18. Lee JH, Jo EH, Hong EJ, Kim KM, Lee I. Safety evaluation of filamentous fungi isolated from industrial doenjang koji. J Microbiol Biotechnol, 24, 1397-1404 (2014) https://doi.org/10.4014/jmb.1403.03007
  19. Lee MJ, Lim SB, Choi JH, Kim J, Lee T, Jang JY. Occurrence of deoxynivalenol and nivalenol in Korean ginger and the optimal storage conditions for reducing mycotoxins. Korean J Food Preserv, 28, 878-889 (2021) https://doi.org/10.11002/kjfp.2021.28.7.878
  20. Loomis D, Guha N, Hall AL, Straif K. Identifying occupational carcinogens: An update from the IARC monographs. Occup Environ Med, 75, 593-603 (2018) https://doi.org/10.1136/oemed-2017-104944
  21. Meneely JP, Ricci F, Van Egmond HP, Elliott CT. Current methods of analysis for the determination of trichothecene mycotoxins in food. TrAC Trends Anal Chem, 30, 192-203 (2011) https://doi.org/10.1016/j.trac.2010.06.012
  22. MFDS. Food Code. Notification 2022-76. Cheongju, Korea (2022)
  23. MFDS. Guidelines on Standard Procedures for Preparing Test Methods, Including Food. Cheongju, Korea, p 17-18 (2016)
  24. Moretti A, Logrieco AF, Susca A. Mycotoxins: An underhand food problem. Mycotoxigenic Fungi, 1542, 3-12 (2017) https://doi.org/10.1007/978-1-4939-6707-0_1
  25. Nargesi S, Abastabar M, Valadan R, Mayahi S, Youn JH, Hedayati MT, Seyedmousavi S. Differentiation of Aspergillus flavus from Aspergillus oryzae targeting the cyp51a gene. Pathogens, 10, 1279 (2021)
  26. Park JH, Kang SJ, Oh SS, Chung DH. The screening of aflatoxin producing fungi from commercial Meju and soy bean paste in western Gyeongnam by immunoassay. Food Hygiene Safety, 16, 274-279 (2001)
  27. Park JW, Kim EK, Shon DH, Kim YB. Natural co-occurrence of aflatoxin B1, fumonisin B1 and ochratoxin a in barley and corn foods from Korea. Food Addit Contam, 19, 1073-1080 (2002) https://doi.org/10.1080/02652030210151840
  28. Park MJ, Yoon MH, Hong HG, Joe TS, Lee IS, Park JH, Ko HU. A survey of the presence of aflatoxins in food. J Food Hyg Saf, 23, 108-112 (2008)
  29. Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, Bhatnagar D, Cleveland TE, Machida M, Yu J. Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol, 44, S9-S11 (2006) https://doi.org/10.1080/13693780600835716
  30. Rank C, Klejnstrup ML, Petersen LM, Kildgaard S, Frisvad JC, Gotfredsen CH, Larsen TO. Comparative chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL3357). Metabolites, 2, 39-56 (2012) https://doi.org/10.3390/metabo2010039
  31. Richard JL. Some major mycotoxins and their mycotoxicoses: An overview. Int J Food Microbiol, 119, 3-10 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.07.019
  32. Rokas A, Payne G, Fedorova ND, Baker SE, Machida M, Yu J, Georgianna DR, Dean RA, Bhatnagar D, Cleveland TE. What can comparative genomics tell us about species concepts in the genus Aspergillus? Stud Mycol, 59, 11-17 (2007) https://doi.org/10.3114/sim.2007.59.02
  33. Seon YK, Park JS, Yang EJ. Isolation of microorganism with high protease activity from Doenjang and production of doenjang with isolated strain. J Korean Soc Food Sci Nutr, 50, 79-87 (2021) https://doi.org/10.3746/jkfn.2021.50.1.79
  34. Shivachandra SB, Sah RL, Singh SD, Kataria JM, Manimaran K. Immunosuppression in broiler chicks fed aflatoxin and inoculated with fowl adenovirus serotype-4 (fav-4) associated with hydropericardium syndrome. Vet Res Commun, 27, 39-51 (2003) https://doi.org/10.1023/A:1022058623634
  35. Shukla S, Park HK, Lee JS, Kim JK, Kim M. Reduction of biogenic amines and aflatoxins in Doenjang samples fermented with various Meju as starter cultures. Food Control, 42, 181-187 (2014). https://doi.org/10.1016/j.foodcont.2014.02.006
  36. Trucksess MW, Weaver CM, Oles CJ, Fry FS, Noonan GO, Betz JM, Rader JI. Determination of aflatoxins B1, B2, G1, and G2 and ochratoxin a in ginseng and ginger by multitoxin immunoaffinity column cleanup and liquid chromatographic quantitation: Collaborative study. J AOAC Int, 91, 511-523 (2008) https://doi.org/10.1093/jaoac/91.3.511