References
- BBC NEWS Korea. (2018, March 26). Retrieved December 10, 2023, from https://www.bbc.com/korean/news-43524873
- Han, J. M. & Jo, G. H. & Kim, J. G. (2017), Verify a Causal Relationship between Fine Dust and Air Condition-Weather Data in Selected Area by Contamination Factors, Korean Big Data Society, 2(1), pp. 17-26.
- Jang, Y. W. & Lee, K. W. & LEE, T. H. & GHIM, Y. S. & Kim, J. H. & Kim, B. G. (2018), The Study of Air Quality in Sao Paulo, Brazil, Hankuk University of Foreign Studies Center for Latin American Studies, 37(2), pp. 137-158.
- Kim, H. G. (2018), Estimating Changes of Causative Factors' Influences: Focusing on Diesel, Korean Society of Data Science, 20(2), pp. 747-757.
- Kim, H. L. & Moon, T. H. (2021), Machine learning-based Fine Dust Prediction Model using Meteorological data and Fine Dust data, Journal of Korean Geographic Information Society, 24(1), pp. 99-111.
- Kim, H. M. & Lee, S. W. & Kim, I. G. & Lee, D. G. & Yoo, S. H. (2020), Measuring the Economic Value of Improving Observation Systems Use and Prediction Model Accuracy_Conjoint Analysis, Korean Journal of Innovation, 15(1), pp. 301-320.
- Kim, S. Y. (2023), A study on PM10 forecasting model using machine learning, Korea Data Information Science Society, 34(5), pp. 763-773. https://doi.org/10.7465/jkdi.2023.34.5.763
- Lee, S. B. (2022), An Introduction to Machine Learning Focusing on Predictive Models Using Supervised Learning, Ewha Womans University Institute of Education Science, 53(3) pp. 1-43.
- Lee, T. H. & Jeon, M. J. (2018), Prediction of Seoul House Price Index Using Deep Learning Algorithms with Multivariate Time Series Data, Journal of Housing and Urban Research, 8(2), pp. 33-56.
- Park, S. A. & Shin, H. J. (2017), Analysis of the Factors Influencing PM2.5 in Korea: Focusing on Seasonal Factors, Korea Institute of Environmental Policy and Evaluation, 25(1), pp. 227-248.
- Park, Y. S. & Park, J. H. & Kang, S. Y. & Lee, S. H. & Son, J. S. & Yoo, C. & Lee, S. B. & Kim, J. S. (2020), Analysis of High PM10, PM2.5 Concentration in Kangwon, Proceedings of the Korean Society for Atmospheric Environment Annual Conference, pp. 146-146.
- Specht, D. F. (1991), A General Regression Neural Network, IEEE Trans. on Neural Networks, 2(6), pp. 568-576. https://doi.org/10.1109/72.97934
- Sung, S. H. & Kim, S. J. & Ryu, M. H. (2020), A Comparative Study on the Performance of Machine Learning Models for the Prediction of Fine Dust: Focusing on Domestic and Overseas Factors, Korean Society for Innovation, 15(4), pp. 339-357.