DOI QR코드

DOI QR Code

Occurrence of Kiwifruit Vine Decline Syndrome and Its Prevention Using Rootstock Tolerant to Waterlogging

키위 쇠락증상 발생 및 습해 저항성 대목을 이용한 예방

  • Gyoung Hee Kim (Department of Agricultural Life Science, Sunchon National University) ;
  • Eu Ddeum Choi (Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 김경희 (국립순천대학교 농생명과학과) ;
  • 최으뜸 (농촌진흥청 국립원예특작과학원 배연구소)
  • Received : 2023.08.22
  • Accepted : 2023.09.27
  • Published : 2023.12.31

Abstract

Kiwifruit industry has been threatened by the emergence of kiwifruit vine decline syndrome causing plant death within one or two years from symptom appearance. The main symptoms of this syndrome are root cortex breakdown, leaf necrosis, phylloptosis, fruit skin wrinkling, and twig wilting. Kiwifruit vine decline syndrome occurred on both Actinidia chinensis var. chinensis and A. chinensis var. deliciosa in mid-summer after rainy season. Kiwifruit vine decline syndrome was turned out to be severely occurred in wettable clay soils affected by waterlogging or poor aeration. No pathogens were directly correlated with the syndrome. Kiwifruit vine decline syndrome could be expected to be efficiently prevented controlled using Bounty 71 rootstock tolerant to water stress such as waterlogging.

키위산업은 키위나무가 급속하게 시들면서 1-2년 사이에 말라죽는 키위 쇠락증상의 출현으로 위협을 받고 있다. 쇠락증상의 주요 증상은 뿌리 피층 붕괴, 잎 괴사, 낙엽, 열매 표피 주름 및 잔가지 시들음이다. 키위 쇠락증상은 장마 후 한여름에 골드키위(Actinidia chinensis var. chinensis)와 그린키위(A. chinensis var. deliciosa)에서 모두 발생하였다. 키위 쇠락증상은 침수나 통기 불량으로 인해 수분이 많은 점질토양에서 심하게 발생하는 것으로 나타났다. 이 증상과 직접적인 관련이 있는 병원균은 없었다. 키위 쇠락증상은 침수와 같은 수분 스트레스에 강한 바운티대목(Bounty 71)을 사용하여 효율적으로 예방할 수 있을 것으로 전망된다.

Keywords

Acknowledgement

This paper was supported by Sunchon National University Research Fund in 2020. We would like to thank Emeritus Professor Young Jin Koh of Sunchon National University and Professor Takeshi Toda of Akita Prefectural University in Japan, for their help and comments in carrying out this study.

References

  1. Baudry, A., Morzieres, J. P. and Ellis, R. 2012. Effect of Phytophthora spp. on kiwifruit in France. N. Z. J. Crop Hortic. Sci. 19: 395-398. https://doi.org/10.1080/01140671.1991.10422883
  2. Cho, Y., Cho, H., Ma, K., Park, M. and Kim, B. 2013. Effect of subsoiling on soil physical properties and fruit quality in organic conversion kiwifruit (Actinidia chinenesis 'Haegeum'). Acta Hortic. 1001: 347-352. https://doi.org/10.17660/ActaHortic.2013.1001.40
  3. Ciccarese, F., Frisullo, S. and Amenduni, M. 1992. Observations of roots of Actinidia in Southern of Italy. Inf. Fitopatol. 42: 57-58.
  4. Conn, K. E., Gubler, W. D., Mircetich, S. M. and Hasey, J. K. 1991. Pathogenicity and relative virulence of nine Phytophthora spp. from kiwifruit. Phytopathology 81: 974-979. https://doi.org/10.1094/Phyto-81-974
  5. Donati, I., Cellini, A., Sangiorgio, D., Caldera, E., Sorrenti, G. and Spinelli, F. 2020. Pathogens associated to kiwifruit vine decline in Italy. Agriculture 10: 119.
  6. Hughes, K. A. and Wilde, R. H. 1989. The effect of poor drainage on the root distribution of kiwifruit vines. N. Z. J. Crop Hortic. Sci. 17: 239-244. https://doi.org/10.1080/01140671.1989.10428038
  7. Jackson, M. B. and Drew, M. C. 1984. Effects of flooding on growth and metabolism of herbaceous plants. In: Flooding Plant Growth, ed. by E. T. Kozlowski, pp. 47-128. Academic Press, Orlando, FL, USA.
  8. Kim, G. H., Choi, E. D., Lee, Y. S., Jung, J. S. and Koh, Y. J. 2016a. Spread of bacterial canker of kiwifruit by secondary infection of Pseudomonas syringae pv. actinidiae biovar 3 in Gyeongnam in 2016. Res. Plant Dis. 22: 276-283. (In Korean) https://doi.org/10.5423/RPD.2016.22.4.276
  9. Kim, G. H., Jung, J. S. and Koh, Y. J. 2017. Occurrence and epidemics of bacterial canker of kiwifruit in Korea. Plant Pathol. J. 33: 351-361. https://doi.org/10.5423/PPJ.RW.01.2017.0021
  10. Kim, G. H., Kim, K.-H., Son, K. I., Choi, E. D., Lee, Y. S., Jung, J. S. et al. 2016b. Outbreak and spread of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 in Korea. Plant Pathol. J. 32: 545-551. https://doi.org/10.5423/PPJ.OA.05.2016.0122
  11. Kyd, B., Hintze, K., Benge, J., Gibbison, L., Murphy, M., Cameron, S. et al. 2021. 2021 Kiwifruit Book. New Zealand Kiwifruit Growers, Mount Maunganui, New Zealand. 188 pp.
  12. Latorre, B. A., Alvarez, C. and Ribeiro, O. K. 1991. Phytophthora root rot of kiwifruit in Chile. Plant Dis. 75: 949-952. https://doi.org/10.1094/PD-75-0949
  13. Lee, Y.-H., Jee, H.-J., Cha, K.-H., Ko, S.-J. and Park, K. B. 2001. Occurrence of Phytophthora root rot of kiwifruit in Korea. Plant Pathol. J. 17: 154-158.
  14. McAneney, K. J., Clough, A., Green, A., Harris, B. and Richardson, A. 1989. Waterlogging and vine death at Kerikeri. N. Z. Kiwifruit 56: 15.
  15. Nakahara, K., Hataya, T., Uyeda, I. and Ieki, H. 1998. An improved procedure for extracting nucleic acids from citrus tissues for diagnosis of citrus viroids. Ann. Phytopathol. Soc. Jpn. 64: 532-538. https://doi.org/10.3186/jjphytopath.64.532
  16. Reid, J. B., Brown, N. S., Tate, K. G., Howartson, R. and Cheah, L. H. 1988. Soil properties and the effects of cyclone Bola on survival and performance of kiwifruit vines. In: Proceedings of the New Zealand Society of Soil Science Conference, p. 12. Nelson, New Zealand.
  17. Reid, J. B., Tate, K. G. and Brown, N. S. 1992. Effects of flooding and alluvium deposition on kiwifruit (Actinidia deliciosa): 2. Vine performance the following season. N. Z. J. Crop Hortic. Sci. 20: 283-288. https://doi.org/10.1080/01140671.1992.10421769
  18. Reid, J. B., Tate, K. G., Brown, N. S. and Cheah, L. H. 1991. Effects of flooding and alluvium deposition on kiwifruit (Actinidia deliciosa): 1. Early cine decline. N. Z. J. Crop Hortic. 19: 247-257. https://doi.org/10.1080/01140671.1991.10421808
  19. Shimizu, S., Miyoshi, T., Yano, T. and Tachibana, Y. 2005. First report of kiwifruit root rot caused by Pythium spp. Jpn. J. Phytopathol. 71: 210.
  20. Smith, G. S., Buwalda, J. G., Green, T. G. A. and Clark, C. J. 1989. Effect of oxygen supply and temperature at the root on the physiology of kiwifruit vines. New Phytol. 113: 431-437. https://doi.org/10.1111/j.1469-8137.1989.tb00354.x
  21. Stewart, A. and McCarrison, A. M. 1991a. Excised shoot assay to determine the pathogenicity of root-rotting Phytophthora species on kiwifruit. Australas. Plant Pathol. 20: 146-148. https://doi.org/10.1071/APP9910146
  22. Stewart, A. and McCarrison, A. M. 1991b. Pathogenicity and relative virulence of seven Phytophthora species on kiwifruit. N. Z. J. Crop Hortic. Sci. 19: 73-76. https://doi.org/10.1080/01140671.1991.10418109
  23. Tacconi, G., Paltrinieri, S., Mejia, J. F., Fuentealba, S. P., Bertaccini, A., Tosi, L. et al. 2015. Vine decline in kiwifruit: climate change and effect on waterlogging and Phytophthora in North Italy. Acta Hortic. 1096: 93-97. https://doi.org/10.17660/ActaHortic.2015.1096.7
  24. Wang, K. X., Xie, Y. L., Yuan, G. Q., Li, Q. Q. and Lin, W. 2015. First report of root and collar rot caused by Phytopythium helicoides on kiwifruit (Actinidia chinensis). Plant Dis. 99: 725.
  25. Yano, T., Shimizu, S., Miyoshi, T., Miyata, N., Immon, K., Shinozaki, T. et al. 2011. Tolerant Actinidia species to Pythium helicoides and P. vexans causing root rot. Acta Hortic. 913: 517-523. https://doi.org/10.17660/ActaHortic.2011.913.69