과제정보
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (No. 2021R1C1C1006014), a science and technology project that opens the future of the region (No. 2021-DD-UP-0380), and the Ministry of Science and ICT (No. 2022M3A9 B6017813).
참고문헌
- Nguyen-Lefebvre AT, Horuzsko A. Kupffer cell metabolism and function. Journal of enzymology and metabolism. 2015;1(1).
- Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cellular & molecular immunology. 2021;18(1):45-56. https://doi.org/10.1038/s41423-020-00558-8
- Zhang L, Bansal MB. Role of Kupffer cells in driving hepatic inflammation and fibrosis in HIV infection. Frontiers in Immunology. 2020; 11:1086.
- Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in the pathogenesis of liver disease. World journal of gastroenterology: WJG. 2006;12(46):7413.
- Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology. 2019;19(8):477-89. https://doi.org/10.1038/s41577-019-0165-0
- Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. International journal of molecular sciences. 2019;20(13):3328.
- Wu X, Dong L, Lin X, Li J. Relevance of the NLRP3 inflammasome in the pathogenesis of chronic liver disease. Frontiers in immunology. 2017;8:1728.
- Canton M, S nchez-Rodriguez R, Spera I, Venegas FC, Favia M, Viola A, et al. Reactive oxygen species in macrophages: sources and targets. Frontiers in immunology. 2021;12:734229.
- Herb M, Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants. 2021;10(2):313.
- Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circulation research. 2018;122(6):877-902. https://doi.org/10.1161/CIRCRESAHA.117.311401
- Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Frontiers in physiology. 2014;5:352.
- Ngo V, Duennwald ML. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants. 2022;11(12):2345.
- Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2018;1865(5):721-33. https://doi.org/10.1016/j.bbamcr.2018.02.010
- Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and molecular life sciences. 2016;73:3221-47. https://doi.org/10.1007/s00018-016-2223-0
- Al-Amarat W, Abukhalil MH, Alruhaimi RS, Alqhtani HA, Aldawood N, Alfwuaires MA, et al. Upregulation of Nrf2/HO-1 signaling and attenuation of oxidative stress, inflammation, and cell death mediate the protective effect of apigenin against cyclophosphamide hepatotoxicity. Metabolites. 2022;12(7):648.
- Orozco LD, Kapturczak MH, Barajas B, Wang X, Weinstein MM, Wong J, et al. Heme oxygenase-1 expression in macrophages plays a beneficial role in atherosclerosis. Circulation research. 2007;100(12):1703-11. https://doi.org/10.1161/CIRCRESAHA.107.151720
- Huang J, Shen X-D, Yue S, Zhu J, Gao F, Zhai Y, et al. Adoptive transfer of heme oxygenase-1 (HO-1)-modified macrophages rescues the nuclear factor erythroid 2-related factor (Nrf2) antiinflammatory phenotype in liver ischemia/reperfusion injury. Molecular Medicine. 2014;20:448-55. https://doi.org/10.2119/molmed.2014.00103
- Bender D, Hildt E. Effect of hepatitis viruses on the Nrf2/Keap1-signaling pathway and its impact on viral replication and pathogenesis. International journal of molecular sciences. 2019;20(18):4659.
- Goyal AK, Brahma BK. Antioxidant and nutraceutical potential of bamboo: an overview. International Journal of Fundamental and Applied Sciences (IJFAS). 2014;3(1):2-10. https://doi.org/10.59415/ijfas.v3i1.55
- Yang JH. Cytoprotective Effect of Bambusae caulis in Liquamen by Blocking Oxidative Stress in Hepatocytes. Molecules. 2023;28(15):5862.
- Kim JM, Choi MH, Yang JH. Cinnamomum japonicum Siebold Branch Extracts Attenuate NO and ROS Production via the Inhibition of p38 and JNK Phosphorylation. Molecules. 2023;28(4).
- Bertani B, Ruiz N. Function and biogenesis of lipopolysaccharides. EcoSal Plus. 2018;8(1):10.1128/ecosalplus. ESP-0001-2018.
- Marrocco A, Ortiz LA. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Frontiers in Immunology. 2022;13:936167.
- Kim EY, Moudgil KD. Regulation of autoimmune inflammation by pro-inflammatory cytokines. Immunology letters. 2008;120(1-2):1-5. https://doi.org/10.1016/j.imlet.2008.07.008
- Hamilton T, Ohmori Y, Tebo J, Kishore R. Regulation of macrophage gene expression by pro-and anti-inflammatory cytokines. Pathobiology. 2000;67(5-6):241-4. https://doi.org/10.1159/000028101
- Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cellular & molecular immunology. 2021;18(9):2114-27. https://doi.org/10.1038/s41423-021-00740-6
- Prochnicki T, Mangan MS, Latz E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000Research. 2016;5.
- Abais JM, Xia M, Zhang Y, Boini KM, Li P-L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants & redox signaling. 2015;22(13):1111-29. https://doi.org/10.1089/ars.2014.5994
- Ryter SW, Choi AM. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Translational Research. 2016;167(1):7-34. https://doi.org/10.1016/j.trsl.2015.06.011
- Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Comprehensive Physiology. 2013;3(2):785.
- Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver International. 2006;26(10):1175-86. https://doi.org/10.1111/j.1478-3231.2006.01342.x
- Helfinger V, Palfi K, Weigert A, Schroder K. The NADPH oxidase Nox4 controls macrophage polarization in an NF κB-dependent manner. Oxidative Medicine and Cellular Longevity. 2019;2019.
- Kim SY, Jeong J-M, Kim SJ, Seo W, Kim M-H, Choi W-M, et al. Pro-inflammatory hepatic macrophages generate ROS through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nature communications. 2017;8(1):2247.
- Zha Q-B, Wei H-X, Li C-G, Liang Y-D, Xu L-H, Bai W-J, et al. ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Frontiers in Immunology. 2016;7:597.
- Gombault A, Baron L, Couillin I. ATP release and purinergic signaling in NLRP3 inflammasome activation. Front Immunol. 2012;3:414.
- Zhao S, Chen F, Yin Q, Wang D, Han W, Zhang Y. Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Front Physiol. 2020;11:571810.
- Hurtado-Navarro L, Angosto-Bazarra D, Pelegrin P, Baroja-Mazo A, Cuevas S. NLRP3 inflammasome and pyroptosis in liver pathophysiology: The emerging relevance of Nrf2 inducers. Antioxidants. 2022;11(5):870.
- Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nature communications. 2016;7(1):11624.
- Liu X, Zhang X, Ding Y, Zhou W, Tao L, Lu P, et al. Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. Antioxid Redox Signal. 2017;26(1):28-43. https://doi.org/10.1089/ars.2015.6615