DOI QR코드

DOI QR Code

HME (Hot-Melt Extrusion)를 이용한 오미자 씨 및 박의 수용성 및 항산화 효과 향상

An Enhanced Water Solubility and Antioxidant Effects of Seed and Pamace of Schisandra chinensis (Turcz.) Baill Formulation by HME (Hot-Melt Extrusion)

  • 투고 : 2023.11.01
  • 심사 : 2023.11.08
  • 발행 : 2023.11.30

초록

Objectives : Schisandra chinensis (Turcz.) Baill contains many nutrients and exhibits high physiological functions. It has been shown that Schisandra seed and pamace contains more nutrients than fruits and thus have higher antioxidant efficacy. In this study, seed and pamace of Schisandra chinensis (Turcz.) Baill (SPSC) were treated with hot-melt extrudate (HME) extrusion to produce water-soluble nanoparticles. Methods : SPSC was treated with HME to prepare nanoparticles. In this process, excipients (hydroxypropyl methylcellulose, pullulan, 2-hydroxylpropyl-beta-cyclodextrin, lecithin) were added to prepare a hydrophilic polymer matrix. To compare and analyze the antioxidant effect and schizandrin content, total flavonoid content, total phenol content and ABTS assay were measured. To confirm the effect of increasing the water solubility of the particles, particle size and water solubility index measurements were performed. The molecular of the material was analyzed using Fourier transform infrared spectroscopy (FT-IR). Results : The particle size of HME extrudates decreased, while total phenols, flavonoids, schizandrin, antioxidant effect, and solubility increased. Through FT-IR, it was confirmed that the SPSC and the extrudate exhibit the same chemical properties. In addition, it was confirmed that when extracted with water, it exhibited a higher antioxidant effect than the ethanol extract. Conclusions : HME technology increased the solubility of SPSC, which are processing by-products, and improved their antioxidant effect to a higher degree. It was confirmed that SPSC could be used as an eco-friendly, high value-added material.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 야생생물 유래 친환경 신소재 및 공정기술개발사업 (과제번호 : 2021003270008)의 지원을 받아 연구되었습니다.

참고문헌

  1. Jeong PH, Kim YS, Shin DH. Changes of physicochemical characteristics of Schizandra chinensis during postharvest ripening at various temperatures. Korean Journal of Food Science and Technology. 2016;38(4):469-474. 
  2. Kim HJ. Isolation of Compounds from the Fruits of Schisandra chinensis Baill. Master's Thesis, Kyunghee University, Dongdaemun-gu, Seoul, Korea, February 2014. 
  3. Kim HJ, Seo YM, Lee EJ, Chung C, Sung HJ, Sohn HY et al. Anti-proliferative and proapoptotic activities by pomace of Schisandra chinensis (Turcz.) Baill. and Schizandrin. Journal of Life Science. 2018;28(4):415-420.  https://doi.org/10.5352/JLS.2018.28.4.415
  4. Kim MS, Sung HJ, Park JY, Sohn HY. Evaluation of anti-oxidant, anti-microbial and anti-thrombosis activities of fruit, seed and pomace of Schizandra chinensis Baillon. Journal of Life Science. 2017;27(2):131-138.  https://doi.org/10.5352/JLS.2017.27.2.131
  5. Jeon YB, Kil JB, Lim SM, Kim MH, Kim MR. Analysis of antioxidative activity and antimutagenic effect of ethanol extract from Schizandra chinensis Baillon. Journal of the East Asian Society of Dietary Life. 2018;18(5):746-752. 
  6. Simoes MF, Pinto RM, Simoes S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discovery Today, 2018;24(9):1749-1768.  https://doi.org/10.1016/j.drudis.2019.05.013
  7. Censi R, Gigliobianco MR, Casadidio C, Di Martino P. Hot melt extrusion: Highlighting physicochemical factors to be investigated while designing and optimizing a hot melt extrusion process. Pharmaceutics. 2018;10(3):89. 
  8. Thakkar R, Thakkar, R, Pillai A, Ashour EA, Repka MA. Systematic screening of pharmaceutical polymers for hot melt extrusion processing: A comprehensive review. International journal of pharmaceutics. 2020;576:118989. 
  9. Go EJ, Ryu BR, Ryu SJ, Kim HB, Lee HT, Kwon JW et al. An enhanced water solubility and stability of anthocyanins in mulberry processed with hot melt extrusion. International Journal of Molecular Sciences. 2021;22(22). 
  10. Charunuch C, Tangkanakul P, Limsangouan N, Sonted V. Effects of extrusion conditions on the physical and functional properties of instant cereal beverage powders admixed with mulberry (Morus alba L.) leaves. Food science and technology research. 2008;14(5):421-421.  https://doi.org/10.3136/fstr.14.421
  11. Wu F, Chen F, Pu Y, Qian F, Leng Y, Mu G et al. Effects of soy lecithin concentration on the physicochemical properties of whey protein isolate, casein-stabilised simulated infant formula emulsion and their corresponding microcapsules. International Journal of Dairy Technology. 2022;75(3):513-526.  https://doi.org/10.1111/1471-0307.12861
  12. Pawar J, Gokarna VS, Deshpande VD, Amin PD. Enhancement of solubility and stability of itraconazole by formation of solid crystal suspensions using hot melt extrusion. Pharm. Eng. 2016;69-71. 
  13. Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J, Astray G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chemistry. 2022;384:132467. 
  14. Munnangi SR, Youssef AAA, Narala N, Lakkala P, Vemula SK, Alluri R et al. Continuous manufacturing of solvent-free cyclodextrin inclusion complexes for enhanced drug solubility via hot-melt extrusion: A quality by design approach. Pharmaceutics. 2023;15(9):2203. 
  15. Chuah AM, Jacob B, Jie Z, Ramesh S, Mandal S, Puthan JK et al. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chemistry. 2014;156:227-233.  https://doi.org/10.1016/j.foodchem.2014.01.108
  16. Yang F, Su Y, Zhang J, DiNunzio J, Leone A, Huang C et al. Rheology guided rational selection of processing temperature to prepare copovidone-nifedipine amorphous solid dispersions via hot melt extrusion (HME). Molecular Pharmaceutics. 2016;13(10):3494-3505.  https://doi.org/10.1021/acs.molpharmaceut.6b00516
  17. Sohrabi Y, Mohammadzadeh-Aghdash H, Baghbani E, Dehghan P, Dolatabadi JEN. Cytotoxicity and genotoxicity assessment of ascorbyl palmitate (ap) food additive. Advanced pharmaceutical bulletin. 2018;8(2):341. 
  18. Fratter A, Mason V, Pellizzato M, Valier S, Cicero AFG, Tedesco E et al. Lipomatrix: A novel ascorbyl palmitate-based lipid matrix to enhancing enteric absorption of serenoa repens oil. International Journal of Molecular Sciences. 2019;20(3):669. 
  19. Park MO, Park CI, Jin SJ, Park MR, Choi IY, Park CH et al. Comparison in content of total polyphenol, flavonoid, and antioxidant capacity from different organs and extruded condition of Moringa oleifera Lam. Processes. 2022;10(5):819. 
  20. Ma J, Xu C, Yu H, Feng Z, Yu W, Gu L et al. Electro-encapsulation of probiotics in gum Arabic-pullulan blend nanofibres using electrospinning technology. Food Hydrocolloids. 2012;111:106381. 
  21. Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S et al. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of food and drug analysis. 2014;22(3):296-302.  https://doi.org/10.1016/j.jfda.2013.11.001
  22. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY et al. Comparision of SOD activity and phenolic compound contents in various Korean medicinal plants. Korean Journal of Medicinal Crop Science. 2004;12(3):191-202. 
  23. Mingle CE, Newsome AL. An amended potassium persulfate ABTS antioxidant assay used for medicinal plant extracts revealed variable antioxidant capacity based upon plant extraction process. bioRxiv. 2020;2020-07. 
  24. Ishii K, Iwai T. Low-coherence dynamic light scattering and its potential for measuring cell dynamics. Current Pharmaceutical Biotechnology. 2012;13(14):2562-2568.  https://doi.org/10.2174/138920101314151120122537
  25. Piao J, Lee JY, Weon JB, Ma CJ, Ko HJ, Kim DD et al. Angelica gigas Nakai and Soluplus-based solid formulations prepared by hot-melting extrusion: Oral absorption enhancing and memory ameliorating effects. PLoS One. 2015;10(4):e0124447. 
  26. Reddy Dumpa N, Bandari SA, Repka M. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing. Pharmaceutics. 2020;12(1):52. 
  27. Monschke M, Kayser K, Wagner KG. Processing of polyvinyl acetate phthalate in hot-melt extrusion-preparation of amorphous solid dispersions. Pharmaceutics. 2020;12(4):337. 
  28. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S et al Pharmaceutical applications of hot-melt extrusion: part I. Drug development and industrial pharmacy. 2007;33(9):909-926.  https://doi.org/10.1080/03639040701498759
  29. Dewanto V, Wu X, Liu RH. Processed sweet corn has higher antioxidant activity. Journal of Agricultural and food Chemistry. 2002;50(17):4959-4964.  https://doi.org/10.1021/jf0255937
  30. Lee SY, Nam S, Choi Y, Kim M, Koo JS, Chae BJ et al. Fabrication and characterizations of hot-melt extruded nanocomposites based on zinc sulfate monohydrate and soluplus. Applied Sciences. 2017;7(9):902. 
  31. Dokoumetzidis A, Papadopoulou V, Macheras P. Analysis of dissolution data using modified versions of Noyes-Whitney equation and the Weibull function. Pharmaceutical research. 2006;23:256-261. 
  32. Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. International Scholarly Research Notices. 2012. 
  33. Kalam Azad MO, Jeong DI, Adnan M, Salitxay T, Heo JW, Naznin MT et al. Effect of different processing methods on the accumulation of the phenolic compounds and antioxidant profile of broomcorn millet (Panicum miliaceum L.) flour. Foods. 2019;87:230. 
  34. Kim HS, Moon HK, Lee YJ, Lee CY, Hwang KH, Kim OH et al. Comparison of the content of shizandrin, gomisin A and gomisin N in schisandra fruit by water extraction condition. Journal of Food Hygiene and Safety. 2015;30(1):59-64.  https://doi.org/10.13103/JFHS.2015.30.1.59
  35. Azad MOK, Kang WS, Lim JD, Park CH. Bio-fortification of Angelica gigas Nakai nano-powder using bio-polymer by hot melt extrusion to enhance the bioaccessibility and functionality of nutraceutical compounds. Pharmaceuticals. 2019;13(1):3. 
  36. Kim HB, Ryu S, Baek JS. The effect of hot-melt extrusion of mulberry leaf on the number of active compounds and antioxidant activity. Plants. 2022;11(22):3019. 
  37. Yi S, Wang J, Lu Y, Ma R, Gao Q, Liu S et al. Novel hot melt extruded matrices of hydroxypropyl cellulose and amorphous felodipine-plasticized hydroxypropyl methylcellulose as controlled release systems. AAPS PharmSciTech. 2019;20:1-14.  https://doi.org/10.1208/s12249-019-1435-7
  38. Jurisic V, Julson JL, Kricka T, Curic D, Voca N, Karunanithy C. Effect of extrusion pretreatment on enzymatic hydrolysis of Miscanthus for the purpose of ethanol production. Journal of Agricultural Science. 2015;7(11). 
  39. Thiry J, Lebrun P, Vinassa C, Adam M, Netchacovitch L, Ziemons E et al. Continuous production of itraconazole-based solid dispersions by hot melt extrusion: Preformulation, optimization and design space determination. International Journal of Pharmaceutics. 2016;515(1-2):114-124.  https://doi.org/10.1016/j.ijpharm.2016.10.003
  40. Go EJ, Ryu BR, Gim GJ, Lee HY, You HS, Kim HB et al. Hot-melt extrusion enhances antioxidant effects of mulberry on probiotics and pathogenic microorganisms. Antioxidants. 2022;11(11):2301. 
  41. Azad MOK, Adnan M, Sung IJ, Lim JD, Baek JS, Lim YS et al. Development of value-added functional food by fusion of colored potato and buckwheat flour through hot-melt extrusion. Journal of Food Processing and Preservation. 2022;46(5), 
  42. Wang W, Kang Q, Liu N, Zhang Q, Zhang Y, Li H et al. Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion. Fitoterapia. 2015;102:189-197.  https://doi.org/10.1016/j.fitote.2014.10.004
  43. Alicic D, Subaric D, Jasic M, Pasalic H, Ackar ?. Antioxidant properties of pollen. Hrana u zdravlju i bolesti: znanstveno-strucni casopis za nutricionizam i dijetetiku. 2014;3(1):6-12. 
  44. Abdel-Hameed ESS. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food chemistry. 2009;114(4):1271-1277.  https://doi.org/10.1016/j.foodchem.2008.11.005
  45. Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. Journal of the American Chemical Society. 1897;19(12):30-934.  https://doi.org/10.1021/ja02086a003
  46. Maniruzzaman M, Rana MM, Boateng JS, Mitchell JC, Douroumis D. Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug development and industrial pharmacy. 2013;39(2):218-227.  https://doi.org/10.3109/03639045.2012.670642
  47. Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B. Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering: C. 2016;58:44-52.  https://doi.org/10.1016/j.msec.2015.08.022
  48. Ameen F, Abdullah MM, Al-Homaidan AA, Al-Lohedan HA, Al-Ghanayem AA, Almansob A. Fabrication of silver nanoparticles employing the cyanobacterium Spirulina platensis and its bactericidal effect against opportunistic nosocomial pathogens of the respiratory tract. Journal of Molecular Structure. 2020;1217:128392. 
  49. Singh M, Singh SP, Rachana R. Development, characterization and cytotoxicity evaluation of Gingko biloba extract (EGB761) loaded microemulsion for intra-nasal application. Journal of Applied Pharmaceutical Science. 2017;7(1):024-034.  https://doi.org/10.7324/JAPS.2017.70104
  50. Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? European journal of pharmaceutical sciences. 2012;47(1):139-151.  https://doi.org/10.1016/j.ejps.2012.05.010
  51. Zhou P, Feng R, Luo Z, Li X, Wang L, Gao L. Synthesis, identification and bioavailability of Juglans regia L. polyphenols-Hohenbuehelia serotina polysaccharides nanoparticles. Food chemistry. 2020;329:127158. 
  52. TD Tran T, HL Tran P. Perspectives on strategies using swellable polymers in solid dispersions for controlled drug release. Current Pharmaceutical Design. 2017;23(11):1639-1648.  https://doi.org/10.2174/1381612822666161021152932
  53. Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams IIIRO. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug development and industrial pharmacy. 2008;34(8):890-902.  https://doi.org/10.1080/03639040801929273
  54. Yokoi Y, Yonemochi E, Terada K. Effects of sugar ester and hydroxypropyl methylcellulose on the physicochemical stability of amorphous cefditoren pivoxil in aqueous suspension. International journal of pharmaceutics. 2005;290(1-2):91-99.  https://doi.org/10.1016/j.ijpharm.2004.11.020
  55. Eguchi M, Du YZ, Ogawa Y, Okada T, Yumoto N, Kodaka M. Effects of conditions for preparing nanoparticles composed of aminoethylcarbamoyl-β-cyclodextrin and ethylene glycol diglycidyl ether on trap efficiency of a guest molecule. International journal of pharmaceutics. 2006;311(1-2):215-222.  https://doi.org/10.1016/j.ijpharm.2005.12.015
  56. Colombo V, Focarete ML, Gherardi M, Gualandi C, Laurita R, Liguori A et al. Crosslinking of water-soluble pullulan nanofibrous mats through atmospheric plasma treatment. In 2015 IEEE International Conference on Plasma Sciences (ICOPS) 2015;(pp. 1-1). IEEE. 
  57. Zhang L, Luan H, Lu W, Wang H. Preliminary development of solid dispersion for an insoluble compound ZL006 by miniaturized hot melt extrusion. Pharmaceutical Fronts. 2019;1(01):e11-e21.  https://doi.org/10.1055/s-0039-1693657
  58. Bajwa GS, Sammon C, Timmins P, Melia CD. Molecular and mechanical properties of hydroxypropyl methylcellulose solutions during the sol: gel transition. Polymer. 2009;50(19):4571-4576.  https://doi.org/10.1016/j.polymer.2009.06.075
  59. Zhang Y, Luo R, Chen Y, Ke X, Hu D, Han M. Application of carrier and plasticizer to improve the dissolution and bioavailability of poorly water-soluble baicalein by hot melt extrusion. AAPS PharmSciTech. 2014;15:560-568.  https://doi.org/10.1208/s12249-013-0071-x
  60. Zhang Y, Jiang H, Wang H, Wang C. Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium persulfate: process and mechanism. Journal of Hazardous Materials. 2020;389: 121918. 
  61. Zhao K, Wang X, Wang Z, Yan W, Zhou X, Xu L et al. A novel depressant for selective flotation separation of pyrite and pyrophyllite. Applied Surface Science. 2019;487:9-16.  https://doi.org/10.1016/j.apsusc.2019.04.252
  62. Choudhury AR, Saluja P, Prasad GS. Pullulan production by an osmotolerant Aureobasidium pullulans RBF-4A3 isolated from flowers of Caesulia axillaris. Carbohydrate polymers. 2011;83(4):1547-1552.  https://doi.org/10.1016/j.carbpol.2010.10.003
  63. Shingel KI. Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydrate research. 2002;337(16):1445-1451.  https://doi.org/10.1016/S0008-6215(02)00209-4
  64. Yi S, Wang J, Lu Y, Ma R, Gao Q, Liu S et al. Novel hot melt extruded matrices of hydroxypropyl cellulose and amorphous felodipine-plasticized hydroxypropyl methylcellulose as controlled release systems. AAPS PharmSciTech. 2019;20:1-14.  https://doi.org/10.1208/s12249-019-1435-7
  65. Rodriguez-Lopez MI, Mercader-Ros MT, Lopez-Miranda S, Pellicer JA, Perez-Garrido A, Perez-Sanchez H et al. Thorough characterization and stability of HP-β-cyclodextrin thymol inclusion complexes prepared by microwave technology: A required approach to a successful application in food industry. Journal of the Science of Food and Agriculture. 2019;99(3):1322-1333.  https://doi.org/10.1002/jsfa.9307
  66. Escobar-Avello D, Avendano-Godoy J, Santos J, Lozano-Castellon J, Mardones C, von Baer D et al. Encapsulation of phenolic compounds from a grape cane pilot-plant extract in hydroxypropyl beta-cyclodextrin and maltodextrin by spray drying. Antioxidants. 2021;10(7):1130. 
  67. Dos Santos J, da Silva GS, Velho MC, Beck RCR. Eudragit®: A versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics. 2021;13(9):1424. 
  68. Pereira GG, Figueiredo S, Fernandes AI, Pinto JF. Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics. 2020;12(9):795. 
  69. Ishimoto K, Shimada Y, Ohno A, Otani S, Ago Y, Maeda S et al. Physicochemical and biochemical evaluation of amorphous solid dispersion of naringenin prepared using hot-melt extrusion. Frontiers in Nutrition. 2022;9:850103. 
  70. Kim BS, Youn JY, Kim JW, Kim MS, Kang G, Lee HB. Applications of HPMC (hydroxypropyl methylcellulose) as drug delivery carrier system. Polymer Science and Technology. 2007;18(6):549-553. 
  71. Korea, Food and Drug Administration (KFDA). Survey on ensuring the safety of thickening stabilizers permitted. Korea, Food and Drug Administration. 2000;180-181. 
  72. Chandrama Singh S, Choudhary M, Mourya A, Khatri DK, Singh PK, Madan J et al. Acute and subacute toxicity assessment of andrographolide-2-hydroxypropyl-β-cyclodextri n complex via oral and inhalation route of administration in sprague-dawley rats. The Scientific World Journal. 2022. 
  73. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and efficacy of lecithins for all animal species. EFSA Journal, 2016;14(8):e04561.