DOI QR코드

DOI QR Code

Long-term and multidisciplinary research networks on biodiversity and terrestrial ecosystems: findings and insights from Takayama super-site, central Japan

  • Hiroyuki Muraoka (River Basin Research Center, Gifu University) ;
  • Taku M. Saitoh (River Basin Research Center, Gifu University) ;
  • Shohei Murayama (National Institute of Advanced Industrial Science and Technology (AIST))
  • Received : 2023.10.18
  • Accepted : 2023.11.15
  • Published : 2023.12.31

Abstract

Growing complexity in ecosystem structure and functions, under impacts of climate and land-use changes, requires interdisciplinary understandings of processes and the whole-system, and accurate estimates of the changing functions. In the last three decades, observation networks for biodiversity, ecosystems, and ecosystem functions under climate change, have been developed by interested scientists, research institutions and universities. In this paper we will review (1) the development and on-going activities of those observation networks, (2) some outcomes from forest carbon cycle studies at our super-site "Takayama site" in Japan, and (3) a few ideas how we connect in-situ and satellite observations as well as fill observation gaps in the Asia-Oceania region. There have been many intensive research and networking efforts to promote investigations for ecosystem change and functions (e.g., Long-Term Ecological Research Network), measurements of greenhouse gas, heat, and water fluxes (flux network), and biodiversity from genetic to ecosystem level (Biodiversity Observation Network). Combining those in-situ field research data with modeling analysis and satellite remote sensing allows the research communities to up-scale spatially from local to global, and temporally from the past to future. These observation networks oftern use different methodologies and target different scientific disciplines. However growing needs for comprehensive observations to understand the response of biodiversity and ecosystem functions to climate and societal changes at local, national, regional, and global scales are providing opportunities and expectations to network these networks. Among the challenges to produce and share integrated knowledge on climate, ecosystem functions and biodiversity, filling scale-gaps in space and time among the phenomena is crucial. To showcase such efforts, interdisciplinary research at 'Takayama super-site' was reviewed by focusing on studies on forest carbon cycle and phenology. A key approach to respond to multidisciplinary questions is to integrate in-situ field research, ecosystem modeling, and satellite remote sensing by developing cross-scale methodologies at long-term observation field sites called "super-sites". The research approach at 'Takayama site' in Japan showcases this response to the needs of multidisciplinary questions and further development of terrestrial ecosystem research to address environmental change issues from local to national, regional and global scales.

Keywords

Acknowledgement

We appreciate the National Institute of Ecology, Republic of Korea, and Shin-ichi Nakano (Kyoto University and Ecological Society of Japan) who kindly invited HM to the symposium at the 10th Congress of East-Asia Federation of Ecological Societies (EAFES) held in Jeju in July 2023. This article is based on the paper presented at the symposium. The authors are grateful to the 'Takayama community' for their cooperative and open-minded activities since 1993. We also appreciate our colleagues in JaLTER, ILTER, JapanFlux, AsiaFlux, PEN, APBON, and GEO BON. HM thanks Hideaki Shibata (Hokkaido University), Kazuhito Ichii (Chiba University), Hibiki M. Noda (National Institute for Environmental Studies), Tsutom Hiura (The University of Tokyo), Yayoi Takeuchi (National Institute for Environmental Studies), Osamu Ochiai (Japan Aerospace Exploration Agency), Antonio Bombelli (Euro-Mediterranean Centre on Climate Change), John D. Tenhunen (University of Bayreuth) and Yowhan Son (Korea University) for discussing the super-site concept and for their generous supports to work with the research communities. We would like to dedicate this article to the late Mr. Kenji Kurumado, who had devoted his enthusiasm and inclusiveness to the scientists and students studying at the Takayama site.

References

  1. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc. 2001;82(11):2415-34. https://doi.org/10.1175/1520-0477(2001)082%3C2415:FANTTS%3E2.3.CO;2 
  2. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD. Shifting plant phenology in response to global change. Trends Ecol Evol. 2007;22(7):357-65. https://doi.org/10.1016/j.tree.2007.04.003 
  3. Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y. Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res. 2013;126(4):447-60. https://doi.org/10.1007/s10265-013-0565-3 
  4. Dolman H, Kutsch W, Muraoka H, Bombelli A, Saigusa N, Schultz J, et al. The group on earth observations carbon and greenhouse gas initiative. In: Kavvada A, Cripe D, Friedl L, editors. Earth observation applications and global policy frameworks. Hoboken: Wiley; 2022. 
  5. Gonzalez A, Vihervaara P, Balvanera P, Bates AE, Bayraktarov E, Bellingham PJ, et al. A global biodiversity observing system to unite monitoring and guide action. Nat Ecol Evol. 2023;7(12):1947-52. https://doi.org/10.1038/s41559-023-02171-0 
  6. Haase P, Tonkin JD, Stoll S, Burkhard B, Frenzel M, Geijzendorffer IR, et al. The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci Total Environ 2018;613-614:1376-84. https://doi.org/10.1016/j.scitotenv.2017.08.111 
  7. Hirano Y, Saitoh TM, Fukatsu E, Kobayashi H, Muraoka H, Shen Y, et al. Relationships among radial growth of Cryptomeria japonica, carbon budget of a forest ecosystem, and climate factors in a cool temperate zone. Mokuzai Gakkaishi. 2021;67(3):117-28. https://doi.org/10.2488/jwrs.67.117 
  8. Ichii K, Ueyama M, Kondo M, Saigusa N, Kim J, Alberto MC, et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J Geophys Res Biogeosci. 2017;122(4):767-95. https://doi.org/10.1002/2016JG003640 
  9. Karki M, Senaratna Sellamuttu S, Okayasu S, Suzuk W, Acosta LA, Alhafedh Y, et al. Regional assessment report on biodiversity and ecosystem services for Asia and the Pacific. Bonn: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; 2018. 
  10. Brondizio ES, Settele J, Diaz S, Ngo HT. Global assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services. Bonn: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; 2019. 
  11. Ito A. Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model. J Plant Res. 2010;123(4):577-88. https://doi.org/10.1007/s10265-009-0305-x. 
  12. Ito A, Saitoh TM, Sasai T. Synergies between observational and modeling studies at the Takayama site: toward a better understanding of processes in terrestrial ecosystems. Ecol Res. 2015;30(2):201-10. https://doi.org/10.1007/s11284-014-1205-7 
  13. Ito A, Muraoka H, Koizumi H, Saigusa N, Murayama S, Yamamoto S. Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site, Japan. Ecol Res. 2006;21(1):137-49. https://doi.org/10.1007/s11284-005-0100-7 
  14. Karan M, Liddell M, Prober SM, Arndt S, Beringer J, Boer M, et al. The Australian SuperSite Network: a continental, long-term terrestrial ecosystem observatory. Sci Total Environ. 2016;568:1263-74. https://doi.org/10.1016/j.scitotenv.2016.05.170 
  15. Kikuzawa K, Lechowicz MJ. Ecology of leaf longevity. Tokyo: Springer; 2011. p. 147. 
  16. Kim ES, Trisurat Y, Muraoka H, Shibata H, Amoroso V, Boldgiv B, et al. The International Long-Term Ecological Research-East Asia-Pacific Regional Network (ILTER-EAP): history, development, and perspectives. Ecol Res. 2018;33(1):19-34. https://doi.org/10.1007/s11284-017-1523-7 
  17. Kondo M, Saitoh TM, Sato H, Ichii K. Comprehensive synthesis of spatial variability in carbon flux across monsoon Asian forests. Agric For Meteorol. 2017;232:623-34. https://doi.org/10.1016/j.agrformet.2016.10.020 
  18. Kuribayashi M, Noh NJ, Saitoh TM, Ito A, Wakazuki Y, Muraoka H. Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model. Int J Biometeorol. 2017;61(6):989-1001. https://doi.org/10.1007/s00484-016-1278-9 
  19. Lee M, Nakane K, Nakatsubo T, Koizumi H. The importance of root respiration in annual soil carbon fluxes in a cool-temperate deciduous forest. Agric For Meteorol. 2005;134(1-4):95-101. https://doi.org/10.1016/j.agrformet.2005.08.011 
  20. Lee MS, Lee JS, Koizumi H. Temporal variation in CO2 efflux from soil and snow surfaces in a Japanese cedar (Cryptomeria japonica) plantation, central Japan. Ecol Res. 2008;23(4):777-85. https://doi.org/10.1007/s11284-007-0439-z 
  21. Loescher HW, Vargas R, Mirtl M, Morris B, Pauw J, Yu X, et al. Building a global ecosystem research infrastructure to address global grand challenges for macrosystem ecology. Earths Future. 2022;10(5):e2020EF001696. https://doi.org/10.1029/2020EF001696 
  22. Melnikova I, Awaya Y, Saitoh TM, Muraoka H, Sasai T. Estimation of leaf area index in a mountain forest of central Japan with a 30-m spatial resolution based on landsat operational land imager imagery: an application of a simple model for seasonal monitoring. Remote Sens. 2018;10(2):179. https://doi.org/10.3390/rs10020179 
  23. Mirtl M, Borer ET, Djukic I, Forsius M, Haubold H, Hugo W, et al. Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci Total Environ. 2018;626:1439-62. https://doi.org/10.1016/j.scitotenv.2017.12.001 
  24. Mo W, Lee MS, Uchida M, Inatomi M, Saigusa N, Mariko S, et al. Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agric For Meteorol. 2005;134(1-4):81-94. https://doi.org/10.1016/j.agrformet.2005.08.015 
  25. Mori AS, Suzuki KF, Hori M, Kadoya T, Okano K, Uraguchi A, et al. Perspective: sustainability challenges, opportunities and solutions for long-term ecosystem observations. Philos Trans R Soc Lond B Biol Sci. 2023;378(1881):20220192. https://doi.org/10.1098/rstb.2022.0192 
  26. Morozumi T, Kato T, Kobayashi H, Sakai Y, Nakashima N, Buareal K, et al. Contributions of the understory and midstory to total canopy solar-induced chlorophyll fluorescence in a ground-based study in conjunction with seasonal gross primary productivity in a cool-temperate deciduous broadleaf forest. Remote Sens Environ. 2023;284:113340. https://doi.org/10.1016/j.rse.2022.113340 
  27. Motohka T, Nasahara KN, Oguma H, Tsuchida S. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens. 2010;2(10):2369-87. https://doi.org/10.3390/rs2102369 
  28. Muraoka H, Ishii R, Nagai S, Suzuki R, Motohka T, Noda HM, et al. Linking remote sensing and in situ ecosystem/biodiversity observations by "Satellite Ecology". In: Nakano S, Yahara T, Nakashizuka T, editors. The biodiversity observation network in the Asia-Pacific region. Tokyo: Springer; 2012. p. 277-308. 
  29. Muraoka H, Koizumi H. Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: implication to the ecosystem carbon gain. Agric For Meteorol. 2005;134(1-4):39-59. https://doi.org/10.1016/j.agrformet.2005.08.013. 
  30. Muraoka H, Koizumi H. Leaf and shoot ecophysiological properties and their role in photosynthetic carbon gain of cool-temperate deciduous forest trees. In: Kawahata H, Awaya Y, editors. Elsevier oceanography series. Amsterdam: Elsevier; 2007. p. 417-43. 
  31. Muraoka H, Koizumi H. Satellite Ecology (SATECO)-linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res. 2009;122(1):3-20. https://doi.org/10.1007/s10265-008-0188-2 
  32. Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, et al. Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. J Plant Res. 2010;123(4):563-76. https://doi.org/10.1007/s10265-009-0270-4 
  33. Muraoka H, Noda HM, Nagai S, Motohka T, Saitoh TM, Nasahara KN, et al. Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest. J Plant Ecol. 2013;6(5):393-407. https://doi.org/10.1093/jpe/rts037 
  34. Muraoka H, Saitoh TM, Nagai S. Long-term and interdisciplinary research on forest ecosystem functions: challenges at Takayama site since 1993. Ecol Res. 2015;30(2):197-200. https://doi.org/10.1007/s11284-015-1251-9 
  35. Muraoka H, Nakaoka M. Biodiversity and ecosystems in Asia: studies and activities of International Long-Term Ecological Research Network in East Asia and Pacific. Ecol Res. 2018;33(1):17-8. https://doi.org/10.1007/s11284-017-1548-y 
  36. Muraoka H. Phenology of photosynthesis in a deciduous broadleaf forest: implications for the carbon cycle in a changing environment. In: Li F, Awaya Y, Kageyama K, Wei Y, editors. River basin environment: evaluation, management and conservation. Singapore: Springer; 2022. p. 3-27. 
  37. Murayama S, Saigusa N, Chan D, Yamamoto S, Kondo H, Eguchi Y. Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan. Tellus B Chem Phys Meteorol. 2003;55(2):232-43. https://doi.org/10.3402/tellusb.v55i2.16751 
  38. Nagai S, Saigusa N, Muraoka H, Nasahara KN. What makes the satellite-based EVI-GPP relationship unclear in a deciduous broad-leaved forest? Ecol Res. 2010;25(2):359-65. https://doi.org/10.1007/s11284-009-0663-9 
  39. Nagai S, Saitoh TM, Kajiwara K, Yoshitake S, Honda Y. Investigation of the potential of drone observations for detection of forest disturbance caused by heavy snow damage in a Japanese cedar (Cryptomeria japonica) forest. J Agric Meteorol. 2018;74(3):123-7. https://doi.org/10.2480/agrmet.D-17-00038 
  40. Nagai S, Saitoh TM, Noh NJ, Yoon TK, Kobayashi H, Suzuki R, et al. Utility of information in photographs taken upwards from the floor of closed-canopy deciduous broadleaved and closed-canopy evergreen coniferous forests for continuous observation of canopy phenology. Ecol Inform. 2013;18:10-9. https://doi.org/10.1016/j.ecoinf.2013.05.005 
  41. Nakashima N, Kato T, Morozumi T, Tsujimoto K, Akitsu TK, Nasahara KN, et al. Area-ratio Fraunhofer line depth (aFLD) method approach to estimate solar-induced chlorophyll fluorescence in low spectral resolution spectra in a cool-temperate deciduous broadleaf forest. J Plant Res. 2021;134(4):713-28. https://doi.org/10.1007/s10265-021-01322-3 
  42. Nasahara KN, Nagai S. Review: Development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN). Ecol Res. 2015;30(2):211-23. https://doi.org/10.1007/s11284-014-1239-x 
  43. Navarro LM, Fernandez N, Guerra C, Guralnick R, Kissling WD, Londono MC, et al. Monitoring biodiversity change through effective global coordination. Curr Opin Environ Sustain. 2017;29:158-69. https://doi.org/10.1016/j.cosust.2018.02.005 
  44. Noda HM, Muraoka H, Nasahara KN, Saigusa N, Murayama S, Koizumi H. Phenology of leaf morphological, photosynthetic, and nitrogen use characteristics of canopy trees in a cool-temperate deciduous broadleaf forest at Takayama, central Japan. Ecol Res. 2015;30(2):247-66. https://doi.org/10.1007/s11284-014-1222-6 
  45. Noda HM, Muraoka H, Nasahara KN. Plant ecophysiological processes in spectral profiles: perspective from a deciduous broadleaf forest. J Plant Res. 2021;134(4):737-51. https://doi.org/10.1007/s10265-021-01302-7 
  46. Noh NJ, Kuribayashi M, Saitoh TM, Nakaji T, Nakamura M, Hiura T, et al. Responses of soil, heterotrophic, and autotrophic respiration to experimental open-field soil warming in a cool-temperate deciduous forest. Ecosystems. 2016;19(3):504-20. https://doi.org/10.1007/s10021-015-9948-8 
  47. Noh NJ, Kuribayashi M, Saitoh TM, Muraoka H. Different responses of soil, heterotrophic and autotrophic respirations to a 4-year soil warming experiment in a cool-temperate deciduous broadleaved forest in central Japan. Agric For Meteorol. 2017;247:560-70. https://doi.org/10.1016/j.agrformet.2017.09.002 
  48. Ohtsuka T, Saigusa N, Koizumi H. On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Glob Chang Biol. 2009;15(4):1015-24. https://doi.org/10.1111/j.1365-2486.2008.01800.x 
  49. Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah YW, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci Data. 2020;7(1):225. https://doi.org/10.1038/s41597-020-0534-3 
  50. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RH, Scholes RJ, et al. Ecology. Essential biodiversity variables. Science. 2013;339(6117):277-8. https://doi.org/10.1126/science.1229931 
  51. Persson L, Carney Almroth BM, Collins CD, Cornell S, de Wit CA, Diamond ML, et al. Outside the safe operating space of the planetary boundary for novel entities. Environ Sci Technol. 2022;56(3):1510-21. https://doi.org/10.1021/acs.est.1c04158 
  52. Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, et al. Plant phenology and global climate change: current progresses and challenges. Glob Chang Biol. 2019;25(6):1922-40. https://doi.org/10.1111/gcb.14619 
  53. Potithep S, Nagai S, Nasahara KN, Muraoka H, Suzuki R. Two separate periods of the LAI-VIs relationships using in situ measurements in a deciduous broadleaf forest. Agric For Meteorol. 2013;169:148-55. https://doi.org/10.1016/j.agrformet.2012.09.003 
  54. Portner HO, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, et al. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change. Bonn: IPBES Secretariat; 2021.
  55. Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, et al. Climate extremes and the carbon cycle. Nature. 2013;500(7462):287-95. https://doi.org/10.1038/nature12350 
  56. Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS 3rd, Lambin EF, et al. A safe operating space for humanity. Nature. 2009;461(7263):472-5. https://doi.org/10.1038/461472a 
  57. Saigusa N, Yamamoto S, Murayama S, Kondo H. Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol. 2005;134(1-4):4-16. https://doi.org/10.1016/j.agrformet.2005.08.016 
  58. Saitoh TM, Nagai S, Yoshino J, Kondo H, Tamagawa I, Muraoka H. Effects of canopy phenology on deciduous overstory and evergreen understory carbon budgets in a cool-temperate forest ecosystem under ongoing climate change. Ecol Res. 2015;30(2):267-77. https://doi.org/10.1007/s11284-014-1229-z 
  59. Saitoh TM, Shin N, Toriyama J, Murayama S, Yasue K. Forest carbon sequestration in mountainous region in Japan under ongoing climate change: implication for future research. In: Li F, Awaya Y, Kageyama K, Wei Y, editors. River basin environment: evaluation, management and conservation. Singapore: Springer; 2022. p. 55-80. 
  60. Saitoh TM, Tamagawa I, Muraoka H, Lee NY, Yashiro Y, Koizumi H. Carbon dioxide exchange in a cool-temperate evergreen coniferous forest over complex topography in Japan during two years with contrasting climates. J Plant Res. 2010;123(4):473-83. https://doi.org/10.1007/s10265-009-0308-7 
  61. Sasai T, Obikawa H, Murakami K, Kato S, Matsunaga T, Nemani RR. Estimation of net ecosystem production in Asia using the diagnostic-type ecosystem model with a 10km grid-scale resolution. J Geophys Res Biogeosci. 2016;121(6):1484-502. https://doi.org/10.1002/2015JG003157 
  62. Scholes RJ, Walters M, Turak E, Saarenmaa H, Heip CHR, Tuama EO, et al. Building a global observing system for biodiversity. Curr Opin Environ Sustain. 2012;4(1):139-46. https://doi.org/10.1016/j.cosust.2011.12.005 
  63. Shen Y, Takata K, Kudo K, Muraoka H, Saitoh TM, Hirano T, et al. Effects of climate on the tree ring density and weight of Betula ermanii in a cool temperate forest in central Japan. Trees. 2022;36(5):1597-605. https://doi.org/10.1007/s00468-022-02315-y 
  64. Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I, Bennett EM, et al. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science. 2015;347(6223):1259855. https://doi.org/10.1126/science.1259855 
  65. Takeuchi Y, Muraoka H, Yamakita T, Kano Y, Nagai S, Bunthang T, et al. The Asia-Pacific Biodiversity Observation Network: 10-year achievements and new strategies to 2030. Ecol Res. 2021;36(2):232-57. https://doi.org/10.1111/1440-1703.12212 
  66. Tang J, Korner C, Muraoka H, Piao S, Shen M, Thackeray SJ, et al. Emerging opportunities and challenges in phenology: a review. Ecosphere. 2016;7(8):e01436. https://doi.org/10.1002/ecs2.1436 
  67. Wohner C, Peterseil J, Poursanidis D, Kliment T, Wilson M, Mirtl M, et al. DEIMS-SDR - a web portal to document research sites and their associated data. Ecol Inform. 2019;51:15-24. https://doi.org/10.1016/j.ecoinf.2019.01.005 
  68. Ueyama M, Ichii K, Kobayashi H, Kumagai T, Beringer J, Merbold L, et al. Inferring CO2 fertilization effect based on global monitoring land-atmosphere exchange with a theoretical model. Environ Res Lett. 2020;15:084009. https://doi.org/10.1088/1748-9326/ab79e5 
  69. Yamamoto S, Koizumi H. Long-term carbon exchange at Takayama site, a cool-temperature deciduous forest in Japan. Agric For Meteorol. 2005;134(1-4):1-3. https://doi.org/10.1016/j.agrformet.2005.11.006 
  70. Yamamoto S, Murayama S, Saigusa N, Kondo H. Seasonal and inter-annual variation of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus B Chem Phys Meteorol. 1999;51(2):402-13. https://doi.org/10.3402/tellusb.v51i2.16314 
  71. Yamamoto Y, Ichii K, Ryu Y, Kang M, Murayama S, Kim SJ, et al. Detection of vegetation drying signals using diurnal variation of land surface temperature: application to the 2018 East Asia heatwave. Remote Sens Environ. 2023;291:113572. https://doi.org/10.1016/j.rse.2023.113572 
  72. Yashiro Y, Lee NY, Ohtsuka T, Shizu Y, Saitoh TM, Koizumi H. Biometric-based estimation of net ecosystem production in a mature Japanese cedar (Cryptomeria japonica) plantation beneath a flux tower. J Plant Res. 2010;123(4):463-72. https://doi.org/10.1007/s10265-010-0323-8