DOI QR코드

DOI QR Code

Exploring small mammal monitoring in South Korea: The debut of the Mostela

  • Hee-Bok Park (Research Center for Endangered Species, National Institute of Ecology) ;
  • Anya Lim (Research Center for Endangered Species, National Institute of Ecology)
  • Received : 2023.10.11
  • Accepted : 2023.11.13
  • Published : 2023.12.31

Abstract

Background: Traditional wildlife monitoring has often relied on invasive techniques posing risks to species and demanding substantial resources. To address this, camera traps emerged as non-invasive alternatives, albeit primarily tailored for larger mammals, posing limitations for small mammal research. Thus, the Mostela, an innovative tool designed to overcome these challenges, was introduced to monitor small mammals in South Korea. Results: The Mostela was deployed at two study sites in South Korea, yielding compelling evidence of its efficiency in capturing small mammal species. By analyzing the collected data, we calculated the relative abundance of each species and elucidated their activity patterns. Conclusions: In summary, the Mostela system demonstrates substantial potential for advancing small mammal monitoring, offering valuable insights into diversity, community dynamics, activity patterns, and habitat preferences. Its application extends to the detection of endangered and rare species, further contributing to wildlife conservation efforts in South Korea. Consequently, the Mostela system stands as a valuable addition to the toolkit of conservationists and researchers, fostering ethical and non-invasive research practices while advancing our understanding of small mammal populations and ecosystems.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Ecology (NIE-B-2023-33).

References

  1. Avenant NL, Cavallini P. Correlating rodent community structure with ecological integrity, Tussen-die-Riviere Nature Reserve, Free State province, South Africa. Integr Zool. 2007;2(4):212-9. https://doi.org/10.1111/j.1749-4877.2007.00064.x.
  2. Boone SR, Brehm AM, Mortelliti A. Seed predation and dispersal by small mammals in a landscape of fear: effects of personality, predation risk and land-use change. Oikos. 2022;2022(2). https://doi.org/10.1111/oik.08232.
  3. Breed D, Meyer LCR, Steyl JCA, Goddard A, Burroughs R, Kohn TA. Conserving wildlife in a changing world: understanding capture myopathy-a malignant outcome of stress during capture and translocation. Conserv Physiol. 2019;7(1):coz027. https://doi.org/10.1093/conphys/coz027.
  4. Burger JR, Chesh AS, Castro RA, Tolhuysen LO, Torre I, Ebensperger LA, et al. The influence of trap type on evaluating population structure of the semifossorial and social rodent Octodon degus. Acta Theriol. 2009;54(4):311-20. https://doi.org/10.4098/j.at.0001-7051.047.2008.
  5. Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J Appl Ecol. 2015;52(3):675-85. https://doi.org/10.1111/1365-2664.12432.
  6. Carbone C, Christie S, Conforti K, Coulson T, Franklin N, Ginsberg JR, et al. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim Conserv. 2001;4:75-9. https://doi.org/10.1017/S1367943001001081.
  7. Cepeda-Duque J, Arango-Correa E, Andrade-Ponce G, Mazariegos L, Hofmeester T, Ramirez-Chaves H. Expanding the frontiers of camera-trapping in Colombia: application of the "Mostela" system to gain knowledge on small non-volant mammals from an Andean cloud forest. Mammalia. 2023;87(5):419-28. https://doi.org/10.1515/mammalia-2023-0033.
  8. Chen C, Brodie JF, Kays R, Davies J, Liu R, Fisher JT, et al. Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conserv Lett. 2022;15(1):e12865. https://doi.org/10.1111/conl.12865.
  9. Croose E, Hanniffy R, Hughes B, McAney K, MacPherson J, Carter SP. Assessing the detectability of the Irish stoat Mustela erminea hibernica using two camera trap-based survey methods. Mamm Res. 2022;67(1):1-8. https://doi.org/10.1007/s13364-021-00598-z.
  10. Delisle ZJ, Flaherty EA, Nobbe MR, Wzientek CM, Swihart RK. Next-generation camera trapping: systematic review of historic trends suggests keys to expanded research applications in ecology and conservation. Front Ecol Evol. 2021;9:617996. https://doi.org/10.3389/fevo.2021.617996.
  11. Field SA, Tyre AJ, Possingham HP. Optimizing the allocation of monitoring effort under economic and observational constraints. J Wildl Manag. 2005;69(2):473-82. https://doi.org/10.2193/0022-541X(2005)069[0473:OAOMEU]2.0.CO;2.
  12. Gompper ME, Kays RW, Ray JC, Lapoint SD, Bogan DA, Cryan JR. A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildl Soc Bull. 2006;34(4):1142-51. https://doi.org/10.2193/0091-7648(2006)34[1142:ACONTT]2.0.CO;2
  13. Gracanin A, Mikac KM. The use of selfie camera traps to estimate home range and movement patterns of small mammals in a fragmented landscape. Animals (Basel). 2022;12(7):912. https://doi.org/10.3390/ani12070912.
  14. Gracanin A, Minchinton TE, Mikac KM. Estimating the density of small mammals using the selfie trap is an effective camera trapping method. Mamm Res. 2022;67(4):467-82. https://doi.org/10.1007/s13364-022-00643-5.
  15. Gruber T. An ethical assessment of the use of old and new methods to study sociality in wild animals. Methods Ecol Evol. 2023;14(8):1842-51. https://doi.org/10.1111/2041-210X.13988.
  16. Hobbs MT, Brehme CS. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates. PLoS One. 2017;12(10):e0185026. https://doi.org/10.1371/journal.pone.0185026.
  17. Kolowski JM, Forrester TD. Camera trap placement and the potential for bias due to trails and other features. PLoS One. 2017;12(10):e0186679. https://doi.org/10.1371/journal.pone.0186679.
  18. Lidicker WZ. Small, warm, and fuzzy. BioScience. 2011;61(2):155-7. https://doi.org/10.1525/bio.2011.61.2.12.
  19. Littlewood NA, Hancock MH, Newey S, Shackelford G, Toney R. Use of a novel camera trapping approach to measure small mammal responses to peatland restoration. Eur J Wildl Res. 2021;67(1):12. https://doi.org/10.1007/s10344-020-01449-z.
  20. Magurran AE. Measuring biological diversity. Curr Biol. 2021;31(19): R1174-7. https://doi.org/10.1016/j.cub.2021.07.049.
  21. Martin SA, Rautsaw RM, Robb F, Bolt MR, Parkinson CL, Seigel RA. Set AHDriFT: applying game cameras to drift fences for surveying herpetofauna and small mammals. Wildl Soc Bull. 2017;41(4):804-9. https://doi.org/10.1002/wsb.805.
  22. MCCleery RA, Zweig CL, Desa MA, Hunt R, Kitchens WM, Percival HF. A novel method for camera-trapping small mammals. Wildl Soc Bull. 2014;38(4):887-91. https://doi.org/10.1002/wsb.447.
  23. Meek PD, Ballard G, Claridge A, Kays R, Moseby K, O'Brien T, et al. Recommended guiding principles for reporting on camera trapping research. Biodivers Conserv. 2014;23(9):2321-43. https://doi.org/10.1007/s10531-014-0712-8.
  24. Moore JF, Soanes K, Balbuena D, Beirne C, Bowler M, Carrasco-Rueda F, et al. The potential and practice of arboreal camera trapping. Methods Ecol Evol. 2021;12(10):1768-79. https://doi.org/10.1111/2041-210X.13666.
  25. Mos J, Hofmeester TR. The Mostela: an adjusted camera trapping device as a promising non-invasive tool to study and monitor small mustelids. Mamm Res. 2020;65(4):843-53. https://doi.org/10.1007/s13364-020-00513-y.
  26. Naing H, Ross J, Burnham D, Htun S, Macdonald DW. Population density estimates and conservation concern for clouded leopards Neofelis nebulosa, marbled cats Pardofelis marmorata and tigers Panthera tigris in Htamanthi Wildlife Sanctuary, Sagaing, Myanmar. Oryx. 2019;53(4):654-62. https://doi.org/10.1017/S0030605317001260.
  27. Nichols JD, Williams BK. Monitoring for conservation. Trends Ecol Evol. 2006;21(12):668-73. https://doi.org/10.1016/j.tree.2006.08.007.
  28. Nottingham CM, Glen AS, Stanley MC. Relative efficacy of chew card and camera trap indices for use in hedgehog and rat monitoring. N Z J Zool. 2021;48(1):32-46. https://doi.org/10.1080/03014223.2020.1784241.
  29. O'Farrell MJ, Clark WA, Emmerson FH, Juarez SM, Kay FR, O'Farrell TM, et al. Use of a mesh live trap for small mammals: are results from Sherman live traps deceptive? J Mammal. 1994;75(3):692-9. https://doi.org/10.2307/1382517.
  30. Oliver RY, Iannarilli F, Ahumada J, Fegraus E, Flores N, Kays R, et al. Camera trapping expands the view into global biodiversity and its change. Philos Trans R Soc Lond B Biol Sci. 2023;378(1881): 20220232. https://doi.org/10.1098/rstb.2022.0232.
  31. Palencia P, Vicente J, Soriguer RC, Acevedo P. Towards a best-practices guide for camera trapping: assessing differences among camera trap models and settings under field conditions. J Zool. 2022;316(3):197-208. https://doi.org/10.1111/jzo.12945.
  32. Park H, Lim A, Choi TY, Baek SY, Song EG, Park YC. Where to spot: individual identification of leopard cats (Prionailurus bengalensis euptilurus) in South Korea. J Ecol Environ. 2019;43:39. https://doi.org/10.1186/s41610-019-0138-z.
  33. Peral C, Landman M, Kerley GIH. The inappropriate use of time-to-independence biases estimates of activity patterns of free-ranging mammals derived from camera traps. Ecol Evol. 2022;12(10):e9408. https://doi.org/10.1002/ece3.9408.
  34. Rasphone A, Kamler JF, Tobler M, Macdonald DW. Density trends of wild felids in northern Laos. Biodivers Conserv. 2021;30(6):1881-97. https://doi.org/10.1007/s10531-021-02172-0.
  35. Ridout MS, Linkie M. Estimating overlap of daily activity patterns from camera trap data. J Agric Biol Environ Stat. 2009;14(3):322-37. https://doi.org/10.1198/jabes.2009.08038.
  36. Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA. Quantifying levels of animal activity using camera trap data. Methods Ecol Evol. 2014;5(11):1170-9. https://doi.org/10.1111/2041-210X.12278.
  37. Soulsbury CD, Gray HE, Smith LM, Braithwaite V, Cotter SC, Elwood RW, et al. The welfare and ethics of research involving wild animals: a primer. Methods Ecol Evol. 2020;11(10):1164-81. https://doi.org/10.1111/2041-210X.13435.
  38. Van der Weyde LK, Mbisana C, Klein R. Multi-species occupancy modelling of a carnivore guild in wildlife management areas in the Kalahari. Biol Conserv. 2018;220:21-8. https://doi.org/10.1016/j.biocon.2018.01.033.
  39. Wilson RP, McMahon CR. Measuring devices on wild animals: what constitutes acceptable practice? Front Ecol Environ. 2006;4(3):147-54. https://doi.org/10.1890/1540-9295(2006)004[0147:MDOWAW]2.0.CO;2.
  40. Yoccoz NG, Nichols JD, Boulinier T. Monitoring of biological diversity in space and time. Trends Ecol Evol. 2001;16(8):446-53. https://doi.org/10.1016/S0169-5347(01)02205-4.