DOI QR코드

DOI QR Code

Application of Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry

Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry의 활용

  • Pil Seung KWON (Department of Clinical Laboratory Science, Wonkwang Health Science University)
  • 권필승 (원광보건대학교 임상병리과)
  • Received : 2023.11.06
  • Accepted : 2023.11.21
  • Published : 2023.12.31

Abstract

The timeliness and accuracy of test results are crucial factors for clinicians to decide and promptly administer effective and targeted antimicrobial therapy, especially in life-threatening infections or when vital organs and functions, such as sight, are at risk. Further research is needed to refine and optimize matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based assays to obtain accurate and reliable results in the shortest time possible. MALDI-TOF MS-based bacterial identification focuses primarily on techniques for isolating and purifying pathogens from clinical samples, the expansion of spectral libraries, and the upgrading of software. As technology advances, many MALDI-based microbial identification databases and systems have been licensed and put into clinical use. Nevertheless, it is still necessary to develop MALDI-TOF MS-based antimicrobial-resistance analysis for comprehensive clinical microbiology characterization. The important applications of MALDI-TOF MS in clinical research include specific application categories, common analytes, main methods, limitations, and solutions. In order to utilize clinical microbiology laboratories, it is essential to secure expertise through education and training of clinical laboratory scientists, and database construction and experience must be maximized. In the future, MALDI-TOF mass spectrometry is expected to be applied in various fields through the use of more powerful databases.

검사 결과의 적시성과 정확성은 임상의가 특히 생명을 위협하는 감염이나 시력과 같은 중요한 장기 및 기능이 위험에 처한 경우, 효과적이고 표적화된 항균 요법을 결정하고 즉시 시행하는데 중요한 요소이다. 가능한 한 최단 시간 내에 정확하고 신뢰할 수 있는 결과를 얻기 위해 matrix assisted laser desorption/ionization time-of-flight (MALDI-TOF) 질량분석기기반 분석을 개선하고 최적화하기 위한 추가 연구 노력이 이루어져야 할 것이다. MALDI-TOF 질량분석기기반 세균 식별은 주로 임상 시료에서 병원체를 분리 및 정제하는 기술, 스펙트럼 라이브러리 확장 및 소프트웨어의 업그레이드에 중점을 둔다. 기술이 발전함에 따라 많은 MALDI-TOF 기반 미생물 동정 데이터베이스 및 시스템이 허가되어 임상에 사용되고 있다. 그럼에도 불구하고, 포괄적인 임상미생물의 특성화를 위해서는 MALDI-TOF 질량분석기 기반 항균제 내성 분석을 개발하는 것이 여전히 필요하다. 특정 적용 범주, 일반적인 분석물질, 주요 수행방법, 한계 및 해결점을 포함하여 임상 연구에서 MALDI-TOF의 적용이 중요하다. 임상 미생물 검사실에서 업무 활용을 위해 임상병리사들의 교육 및 훈련을 통한 전문성 확보가 필수적이며, 데이터베이스 구축과 경험을 극대화하여야 할 것이다. 향후 더 강력한 데이터베이스의 활용으로 다양한 분야에서 MALDI-TOF 질량분석기가 적용될 것으로 보인다.

Keywords

Acknowledgement

This paper was supported by Wonkwang Health Science University in 2023.

References

  1. Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL, et al. MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem. 2011;44:104-109. https://doi.org/10.1016/j.clinbiochem.2010.06.017
  2. Hodille E, Prudhomme C, Dumitrescu O, Benito Y, Dauwalder O, Lina G. Rapid, easy, and reliable identification of Nocardia sp. by MALDI-TOF Mass Spectrometry, VITEK®-MS IVD V3.2 Database, using direct deposit. Int J Mol Sci. 2023;24:5469. https://doi.org/10.3390/ijms24065469
  3. Dieckmann R, Malorny B. Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2011;77:4136-4146. https://doi.org/10.1128/aem.02418-10
  4. Popovic NT, Kazazic SP, Strunjak-Perovic I, Coz-Rakovac R. Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environ Res. 2017;152:7-16. https://doi.org/10.1016/j.envres.2016.09.020
  5. Carbonnelle E, Nassif X. [Applications of MALDI-TOF-MS in clinical microbiology laboratory]. Med Sci (Paris). 2011;27:882-888. French. https://doi.org/10.1051/medsci/20112710017
  6. De Carolis E, Vella A, Vaccaro L, Torelli R, Spanu T, Fiori B, et al. Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. J Infect Dev Ctries. 2014;8:1081-1088. https://doi.org/10.3855/jidc.3623
  7. Benagli C, Demarta A, Caminada A, Ziegler D, Petrini O, Tonolla M. A rapid MALDI-TOF MS identification database at genospecies level for clinical and environmental Aeromonas strains. PLoS One. 2012;7:e48441. https://doi.org/10.1371/journal.pone.0048441
  8. Seng P, Abat C, Rolain JM, Colson P, Lagier JC, Gouriet F, et al. Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:2182-2194. https://doi.org/10.1128/jcm.00492-13
  9. Dichtl K, Klugherz I, Greimel H, Luxner J, Koberl J, Friedl S, et al. A head-to-head comparison of three MALDI-TOF mass spectrometry systems with 16S rRNA gene sequencing. J Clin Microbiol. 2023;61:e0191322. https://doi.org/10.1128/jcm.01913-22
  10. Peng D, Zhu X, Liu Y, Li X, Chen G, Li Y, et al. Evaluation of formic acid sandwich (FA-sandwich): a pretreatment method for filamentous fungi, for the identification of clinically relevant filamentous fungi by two MALDI-TOF MS systems. Med Mycol. 2022;60:myac018. https://doi.org/10.1093/mmy/myac018
  11. Idelevich EA, Nedow B, Vollmer M, Becker K. Evaluation of a novel benchtop tool for acceleration of sample preparation for MALDITOF mass spectrometry. J Clin Microbiol. 2023;61:e0021223. https://doi.org/10.1128/jcm.00212-23
  12. Barcelos MM, Martins L, Grenfell RC, Juliano L, Anderson KL, Dos Santos MV, et al. Comparison of standard and on-plate extraction protocols for identification of mastitis-causing bacteria by MALDI-TOF MS. Braz J Microbiol. 2019;50:849-857. https://doi.org/10.1007/s42770-019-00110-5
  13. Jeraldine VM, Wim L, Ellen VE. A comparative study for optimization of MALDI-TOF MS identification of filamentous fungi. Eur J Clin Microbiol Infect Dis. 2023;42:1153-1161. https://doi.org/10.1007/s10096-023-04652-3
  14. Bacanelli G, Araujo FR, Verbisck NV. Improved MALDI-TOF MS identification of Mycobacterium tuberculosis by use of an enhanced cell disruption protocol. Microorganisms. 2023;11:1692. https://doi.org/10.3390/microorganisms11071692
  15. McTaggart LR, Chen Y, Poopalarajah R, Kus JV. Incubation time and culture media impact success of identification of Nocardia spp. by MALDI-ToF mass spectrometry. Diagn Microbiol Infect Dis. 2018;92:270-274. https://doi.org/10.1016/j.diagmicrobio.2018.06.016
  16. Yang H, Smith RD, Sumner KP, Goodlett DR, Johnson JK, Ernst RK. A matrix-assisted laser desorption ionization-time of flight mass spectrometry direct-from-urine-specimen diagnostic for gram-negative pathogens. Microbiol Spectr. 2022;10:e0373022. https://doi.org/10.1128/spectrum.03730-22
  17. Messina A, Palmigiano A, Bua RO, Romeo DA, Barone R, Sturiale L, et al. CSF N-glycoproteomics using MALDI MS techniques in neurodegenerative diseases. Methods Mol Biol. 2019;2044:255-272. https://doi.org/10.1007/978-1-4939-9706-0_16
  18. Lin HH, Tseng KH, Tien N, Lin YT, Yu J, Hsueh PR, et al. Evaluation of the Rapid Sepsityper protocol and specific MBT-Sepsityper module for the identification of bacteremia and fungemia using Bruker Biotyper MALDI-TOF MS. J Microbiol Immunol Infect. 2022;55(6 Pt 2):1330-1333. https://doi.org/10.1016/j.jmii.2022.07.005
  19. Perse G, Samoscanec I, Bosnjak Z, Budimir A, Kulis T, Marekovic I. Sepsityper® kit versus in-house method in rapid identification of bacteria from positive blood cultures by MALDI-TOF mass spectrometry. Life (Basel). 2022;12:1744. https://doi.org/10.3390/life12111744
  20. Di Gaudio F, Indelicato S, Indelicato S, Tricoli MR, Stampone G, Bongiorno D. Improvement of a rapid direct blood culture microbial identification protocol using MALDI-TOF MS and performance comparison with SepsiTyper kit. J Microbiol Methods. 2018;155:1-7. https://doi.org/10.1016/j.mimet.2018.10.015
  21. Kayin M, Mert B, Aydemir S, Ozenci V. Comparison of rapid BACpro® II, Sepsityper® kit and in-house preparation methods for direct identification of bacteria from blood cultures by MALDI-TOF MS with and without Sepsityper® module analysis. Eur J Clin Microbiol Infect Dis. 2019;38:2133-2143. https://doi.org/10.1007/s10096-019-03654-4
  22. Rindi L, Puglisi V, Franconi I, Fais R, Lupetti A. Rapid and accurate identification of nontuberculous mycobacteria directly from positive primary MGIT cultures by MALDI-TOF MS. Microorganisms. 2022;10:1447. https://doi.org/10.3390/microorganisms10071447
  23. Markanovic M, Makek MJ, Glodic G, Kulis T, Marekovic I. Evaluation and clinical impact of MALDI Biotyper Mycobacteria Library v6.0 for identification of nontuberculous mycobacteria by MALDI-TOF mass spectrometry. J Mass Spectrom. 2023;58:e4915. https://doi.org/10.1002/jms.4915
  24. Teke L, Baris A, Bayraktar B. Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for non-albicans Candida and uncommon yeast isolates. J Microbiol Methods. 2021;185:106232. https://doi.org/10.1016/j.mimet.2021.106232
  25. Sacheli R, Henri AS, Seidel L, Ernst M, Darfouf R, Adjetey C, et al. Evaluation of the new Id-Fungi plates from Conidia for MALDI-TOF MS identification of filamentous fungi and comparison with conventional methods as identification tool for dermatophytes from nails, hair and skin samples. Mycoses. 2020;63:1115-1127. https://doi.org/10.1111/myc.13156
  26. L'Ollivier C, Ranque S. MALDI-TOF-based dermatophyte identification. Mycopathologia. 2017;182:183-192. https://doi.org/10.1007/s11046-016-0080-x
  27. Florio W, Baldeschi L, Rizzato C, Tavanti A, Ghelardi E, Lupetti A. Detection of antibiotic-resistance by MALDI-TOF mass spectrometry: an expanding area. Front Cell Infect Microbiol. 2020;10:572909. https://doi.org/10.3389/fcimb.2020.572909
  28. Hrabak J, Bitar I, Papagiannitsis CC. Combination of mass spectrometry and DNA sequencing for detection of antibiotic resistance in diagnostic laboratories. Folia Microbiol (Praha). 2020;65:233-243. https://doi.org/10.1007/s12223-019-00757-5
  29. Hong JS, Kim D, Kang DY, Park BY, Yang S, Yoon EJ, et al. Evaluation of the BD Phoenix M50 automated microbiology system for antimicrobial susceptibility testing with clinical isolates in Korea. Microb Drug Resist. 2019;25:1142-1148. https://doi.org/10.1089/mdr.2018.0370
  30. Cho A, Normile D. Nobel prize in chemistry. Mastering macromolecules. Science. 2002;298:527-528. https://doi.org/10.1126/science.298.5593.527b
  31. Villanueva J, Shaffer DR, Philip J, Chaparro CA, ErdjumentBromage H, Olshen AB, et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest. 2006;116:271-284. https://doi.org/10.1172/jci26022
  32. Rodrigo MA, Zitka O, Krizkova S, Moulick A, Adam V, Kizek R. MALDI-TOF MS as evolving cancer diagnostic tool: a review. J Pharm Biomed Anal. 2014;95:245-255. https://doi.org/10.1016/j.jpba.2014.03.007
  33. Braga RM, Dourado MN, Araujo WL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol. 2016;47(Suppl 1):86-98. https://doi.org/10.1016/j.bjm.2016.10.005
  34. Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Dohren H. Rapid screening and dereplication of bacterial isolates from marine sponges of the sula ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol. 2005;67:539-548. https://doi.org/10.1007/s00253-004-1812-2
  35. Kim JK, Jackson SN, Murray KK. Matrix-assisted laser desorption/ionization mass spectrometry of collected bioaerosol particles. Rapid Commun Mass Spectrom. 2005;19:1725-1729. https://doi.org/10.1002/rcm.1982
  36. Ashfaq MY, Da'na DA, Al-Ghouti MA. Application of MALDI-TOF MS for identification of environmental bacteria: a review. J Environ Manage. 2022;305:114359. https://doi.org/10.1016/j.jenvman.2021.114359
  37. de Santana FS, Gracioso LH, Karolski B, Dos Passos Galluzzi Baltazar M, Mendes MA, do Nascimento CAO, et al. Isolation of bisphenol A-tolerating/degrading Shewanella haliotis strain MH137742 from an estuarine environment. Appl Biochem Biotechnol. 2019;189:103-115. https://doi.org/10.1007/s12010-019-02989-0
  38. Illikoud N, Rossero A, Chauvet R, Courcoux P, Pilet MF, Charrier T, et al. Genotypic and phenotypic characterization of the food spoilage bacterium Brochothrix thermosphacta. Food Microbiol. 2019;81:22-31. https://doi.org/10.1016/j.fm.2018.01.015
  39. Mohar Lorbeg P, Golob M, Kramer M, Treven P, Bogovic Matijasic B. Evaluation of dietary supplements containing viable bacteria by cultivation/MALDI-TOF mass spectrometry and PCR identification. Front Microbiol. 2021;12:700138. https://doi.org/10.3389/fmicb.2021.700138
  40. Ulrich S, Gottschalk C, Dietrich R, Martlbauer E, Gareis M. Identification of cereulide producing Bacillus cereus by MALDI-TOF MS. Food Microbiol. 2019;82:75-81. https://doi.org/10.1016/j.fm.2019.01.012
  41. Fernandez-No IC, Bohme K, Gallardo JM, Barros-Velazquez J, Canas B, Calo-Mata P. Differential characterization of biogenic amine-producing bacteria involved in food poisoning using MALDI-TOF mass fingerprinting. Electrophoresis. 2010;31:1116-1127. https://doi.org/10.1002/elps.200900591
  42. Kim E, Cho EJ, Yang SM, Kim MJ, Kim HY. Novel approaches for the identification of microbial communities in kimchi: MALDI-TOF MS analysis and high-throughput sequencing. Food Microbiol. 2021;94:103641. https://doi.org/10.1016/j.fm.2020.103641