DOI QR코드

DOI QR Code

Optimization of disposable paper-based test strips for hypochlorous acid detection

  • Rita E. Ampiaw (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Muhammad Yaqub (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Changyeon Woo (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Wontae Lee (Department of Environmental Engineering, Kumoh National Institute of Technology)
  • Received : 2023.06.28
  • Accepted : 2024.01.04
  • Published : 2023.07.25

Abstract

The Covid-19 pandemic has increased demand for chlorine-based sanitizing solutions, most of which contain hypochlorous acid (HOCl) as an active agent. Free chlorine (HOCl) in these sanitizers is crucial for their efficacy. Disposable test strips are affordable and convenient tools for determining various qualitative and quantitative parameters. In this study, disposable opto-chemical test strips were developed by physically immobilizing 3,3',5,5'-tetramethylbenzidine (TMB) and o-dianisidine (o-D) reagents on chromatography and filter paper-based test strips for the visualization and detection of free chlorine in the form of HOCl. The reagents undergo a rapid color change upon reaction with chlorine through a redox reaction. The paper-based test strips showed rapid color change within a minute and a low sample volume requirement (1 ml). This portable, disposable paper-based test strip is a simple and cost-effective way to rapidly detect the presence of HOCl sanitizers for home and field applications. Both TMB and o-D successfully detected chlorine. Chromatography paper proved to be the more efficient option among the two papers used as substrates for the reagents (TMB and o-D). It exhibited high retention capacity and high performance in terms of color transformation when reacting with HOCl, even after two months of storage.

Keywords

Acknowledgement

This work was supported by the Technology Development Program(S3163728) funded by the Ministry of SMEs and Startups(MSS, Korea).

References

  1. Arsawiset, S., Teepoo, S. (2020), "Ready-to-use, functionalized paper test strip used with a smartphone for the simultaneous on-site detection of free chlorine, hydrogen sulfide and formaldehyde in wastewater", Anal. Chim. Acta, 1118, 63-72. https://doi.org/10.1016/j.aca.2020.04.041.
  2. Ding, T., Oh, D.H., Liu, D. (2019), "Electrolyzed water in food: Fundamentals and applications", Springer, Singapore. https://doi.org/10.1007/978-981-13-3807-6.
  3. Dou, J., Shang, J., Kang, Q., Shen, D. (2019), "Field analysis free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and accuracy", Microchem. J., 150, 104200. https://doi.org/10.1016/j.microc.2019.104200.
  4. Drozd, M., Pietrzak, M., Parzuchowski, P.G., Malinowska, E. (2016), "Pitfalls and capabilities of various hydrogen donors in evaluation of peroxidase-like activity of gold nanoparticles", Anal. Bioanal. Chem., 408, 8505-8513. https://doi.org/10.1007/s00216-016-9976-z.
  5. Dungchai, W., Chailapakul, O., Henry, C.S. (2010), "Use of multiple colorimetric indicators for paper-based microfluidic devices", Anal. Chim. Acta, 674, 227-233. https://doi.org/10.1016/j.aca.2010.06.019.
  6. Feng, Y., Smith, D.W., Bolton, J.R. (2007), "Photolysis of aqueous free chlorine species (HOCl and OCl-) with 254 nm ultraviolet light", J. Environ. Eng. Sci., 6, 277-284. https://doi.org/10.1139/S06-052.
  7. Fobar, D.G., Xiao, X., Burger, M., Le Berre, S., Motta, A.T., Jovanovic, I. (2018), "Robotic delivery of laser-induced breakdown spectroscopy for sensitive chlorine measurement in dry cask storage systems. Prog", Nucl. Energy, 109, 188-194. https://doi.org/10.1016/J.PNUCENE.2018.08.001.
  8. Guo, Y., Ma, Q., Cao, F., Zhao, Q., Ji, X. (2015), "Colorimetric detection of hypochlorite in tap water based on the oxidation of 3,3',5,5'-tetramethyl benzidine", Anal. Methods, 7, 4055-4058. https://doi.org/10.1039/c5ay00735f.
  9. Ha, Y., Kim, Y., Song, E., Yoo, H.J., Kwon, J.H. (2021), "Development of a personal passive air sampler for estimating exposure to effective chlorine while using chlorine-based disinfectants", Indoor Air, 31, 557-565. https://doi.org/10.1111/ina.12747.
  10. Holland, V.R., Saunders, B.C., Rose, F.L., Walpole, A.L. (1974), "A safer substitute for benzidine in the detection of blood", Tetrahedron, 30, 3299-3302. https://doi.org/10.1016/S0040-4020(01)97504-0.
  11. Kettle, A.J., Albrett, A.M., Chapman, A.L., Dickerhof, N., Forbes, L.V., Khalilova, I., Turner, R. (2014), "Measuring chlorine bleach in biology and medicine", Biochim. Biophys. Acta Gen. Subj., 1840, 781-793. https://doi.org/10.1016/J.BBAGEN.2013.07.004.
  12. Klencsar, B., Bolea-Fernandez, E., Florez, M.R., Balcaen, L., Cuyckens, F., Lynen, F., Vanhaecke, F. (2016), "Determination of the total drug-related chlorine and bromine contents in human blood plasma using high performance liquid chromatography-tandem ICP-mass spectrometry (HPLC-ICP-MS/MS)", J. Pharm. Biomed. Anal., 124, 112-119. https://doi.org/10.1016/J.JPBA.2016.02.019.
  13. Lehmann, D.M., Krishnakumar, K., Batres, M.A., Hakola-Parry, A., Cokcetin, N., Harry, E., Carter, D.A. (2019), "A cost-effective colourimetric assay for quantifying hydrogen peroxide in honey", Access Microbiol., 1. https://doi.org/10.1099/acmi.0.000065.
  14. Mesquita, R.B.R., Noronha, M.L.F.O.B., Pereira, A.I.L., Santos, A.C.F., Torres, A.F., Cerda, V., Rangel, A.O.S.S. (2007), "Use of tetramethylbenzidine for the spectrophotometric sequential injection determination of free chlorine in waters", Talanta, 72, 1186-1191. https://doi.org/10.1016/j.talanta.2007.01.010.
  15. Miller, E.A., Maalouf, Y.J. Al, Sikes, H.D. (2018), "Design principles for enhancing sensitivity in paper-based diagnostics via large-volume processing", Anal. Chem., 90, 9472-9479. https://doi.org/10.1021/ACS.ANALCHEM.8B02113.
  16. Miller, M.T. (2018), "Visualization and Enhancement: Biological Evidence. Crime Scene", Investig. Lab. Man. 2nd edition, 97-108. https://doi.org/10.1016/B978-0-12-812845-9.00013-3.
  17. Palladino, P., Torrini, F., Scarano, S., Minunni, M. (2020a), "3,3',5,5'-Tetramethylbenzidine as multi-colorimetric indicator of chlorine in water in line with health guideline values", Anal. Bioanal. Chem., 412, 7861-7869. https://doi.org/10.1007/s00216-020-02918-9.
  18. Palladino, P., Torrini, F., Scarano, S., Minunni, M. (2020b), "Colorimetric analysis of the early oxidation of dopamine by hypochlorous acid as preliminary screening tool for chemical determinants of neuronal oxidative stress", J. Pharm. Biomed. Anal., 179, 113016. https://doi.org/10.1016/J.JPBA.2019.113016
  19. Phoonsawat, K., Ratnarathorn, N., Henry, C.S., Dungchai, W. (2018), "A distance-based paper sensor for the determination of chloride ions using silver nanoparticles", Analyst, 143, 3867-3873. https://doi.org/10.1039/c8an00670a.
  20. Rita, E. A., Yaqub, M., Lee, W., (2019) "Adsorption of microcystin onto activated carbon: A review", Membr. Water Treat., 10, 405-415. https://doi.org/10.12989/mwt.2019.10.6.405.
  21. Schwenke, K.U., Spiehl, D., Krausse, M., Riedler, L., Ruppenthal, A., Villforth, K., Meckel, T., Biesalski, M., Rupprecht, D., Schwall, G. (2019), "Analysis of free chlorine in aqueous solution at very low concentration with lateral flow tests", Sci. Rep., 9, 1-11. https://doi.org/10.1038/s41598-019-53687-0.
  22. Serrat, F.B. (1994), "Colorimetric method for determination of chlorine with 3,3',5,5'-tetramethylbenzidine", Talanta, 41, 2091-2094. https://doi.org/10.1016/0039-9140(94)00184-7.
  23. Shang, J., Yu, L., Sun, Y., Chen, X., Kang, Q., Shen, D. (2019), "On site determination of free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and reliability", New J. Chem., 43, 14409-14416. https://doi.org/10.1039/c9nj03954f.
  24. Wang, J., Oh, S., Cho, Y., (2023) "Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential", Membr. Water Treat., 14, 77-83. https://doi.org/10.12989/mwt.2023.14.2.077.
  25. Wang, S., Xu, Z., Fang, Y., Liu, Z., Zhao, X., Yang, G., Kong, F. (2018), "Development of cellulosic paper-based test strips for mercury(II) determination in aqueous solution", J. Anal. Methods Chem, 2018. https://doi.org/10.1155/2018/3594020.
  26. Wu, L., Li, G., Xu, X., Zhu, L., Huang, R., Chen, X. (2019), "Application of nano-ELISA in food analysis: Recent advances and challenges", Trends Anal. Chem., 113, 140-156. https://doi.org/10.1016/j.trac.2019.02.002.
  27. Xiong, X., Tang, Y., Zhang, L., Zhao, S. (2015), "A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters", Talanta, 132, 790-795. https://doi.org/10.1016/J.TALANTA.2014.10.022.
  28. Yamaoka, H., Nakayama-Imaohji, H., Horiuchi, I., Yamasaki, H., Nagao, T., Fujita, Y., Maeda, H., Goda, H., Kuwahara, T. (2016), "Tetramethylbenzidine method for monitoring the free available chlorine and microbicidal activity of chlorite-based sanitizers under organic-matter-rich environments", Lett. Appl. Microbiol., 62, 47-54. https://doi.org/10.1111/LAM.12506.
  29. Zhang, J., Yang, X. (2013), "A simple yet effective chromogenic reagent for the rapid estimation of bromate and hypochlorite in drinking water", Analyst, 138, 434-437. https://doi.org/10.1039/c2an36287b.