DOI QR코드

DOI QR Code

Mixed matrix membranes for dye removal

  • Evrim Celik-Madenli (Department of Environmental Engineering, Suleyman Demirel University) ;
  • Dilara Kesiktas (Department of Environmental Engineering, Suleyman Demirel University)
  • Received : 2023.06.14
  • Accepted : 2024.01.02
  • Published : 2023.07.25

Abstract

Mixed matrix membranes (MMMs) can be a promising alternative for the solution of dye removal from coloured effluents. Polymeric membranes are widely used due to their good film-forming ability, flexibility, separation properties, and cost. However, they have low mechanical, chemical, and thermal resistances. Moreover, the fouling of polymeric membranes is high because of their hydrophobic nature. Hence, there is an increasing interest in organic-inorganic hybrid membranes as a new-generation membrane material. It has been shown that carbon nanotubes have the potential to increase the material properties of polymers with their low density, high strength, hardness, and exceptional aspect ratio. In this work, carbon nanotubes blended MMMs were prepared and methyl orange removal efficiency of them was investigated. Compared to the bare membranes, MMMs showed not only increased hydrophilicity, water content, and pure water flux but also increased methyl orange rejection and flux recovery

Keywords

Acknowledgement

This research was supported by Suleyman Demirel University through the Scientific Research Projects Program (FBY-2018-5377).

References

  1. Alambi, R.K., Ahmed, M., Bhadrachari, G., Al-Rughaib, M. and Thomas, J.P. (2023), "Ethylenediamine-graphene oxide impregnated thin film nanocomposite membrane for the enhanced boron separation from seawater", Environ. Eng. Res., 28(6). https://doi.org/10.4491/eer.2022.760. 
  2. Ali, A., Koloor, S.S.R., Alshehri, A.H. and Arockiarajan, A. (2023), "Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures-A review", J. Mater. Res. Technol., 24, 6495-6521. https://doi.org/10.1016/j.jmrt.2023.04.072. 
  3. Arhin, S.G., Banadda, N., Komakech, A.J., Kabenge, I. and Wanyama, J. (2016), "Membrane fouling control in low pressure membranes: A review on pretreatment techniques for fouling abatement", Environ. Eng. Res., 21(2), 109-120. https://doi.org/10.4491/eer.2016.017. 
  4. Azimi, B., Sepahvand, S., Ismaeilimoghadam, S., Kargarzadeh, H., Ashori, A., Jonoobi, M. and Danti, S. (2023), "Application of cellulose-based materials as water purification filters, a state-of-the-art review", J. Polym. Environ., 1-22. https://doi.org/10.1007/s10924-023-02989-6. 
  5. Baker, R.W., Cussler, E.L., Eykamp, W., Kores, W.J., Riley, R.L. and Strathmann, H. (1991), Membrane Separation Systems: Recent Developments and Future Directions, Noyes Data Corp. 
  6. Bodzek, M., Konieczny, K. and Kwiecinska-Mydlak, A. (2022), "Recent advances in water and wastewater treatment using membranes with carbon nanotubes", Membr. Water Treat., 13(6), 259-290, https://doi.org/10.12989/mwt.2022.13.6.259. 
  7. Cardew, P.T. and Le, M.S. (1998), Membrane Processes: A Technology Guide, The Royal Society of Chemistry, U.K. 
  8. Celik-Madenli, E., Cakmakci, O., Isguder, I., Yigit, N.O., Kitis, M., Koyuncu, I. and Choi, H. (2017), Effects of the Solvent Ratio on Carbon Nanotube Blended Polymeric Membranes in Application of Nanotechnology in Membranes for Water Treatment, CRC Press, London. 
  9. Celik, E., Liu, L. and Choi, H. (2011a), "Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration", Water Res., 45(16), 5287-5294. https://doi.org/10.1016/j.watres.2011.07.036. 
  10. Celik, E., Park, H., Choi, H. and Choi, H. (2011b), "Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment", Water Res., 45(1), 274-282. https://doi.org/10.1016/j.watres.2010.07.060. 
  11. Celik Madenli, E. and Cakmakci, O. (2017), "Preparation and characterization of PAN/CNT nanocomposite fiber supports for membrane filtration", Desalin. Water Treat., 60, 137-143. https://doi.org/10.5004/dwt.2017.0808. 
  12. Celik Madenli, E., Yanar, N. and Choi, H. (2021), "Enhanced antibacterial properties and suppressed biofilm growth on multi-walled carbon nanotube (MWCNT) blended polyethersulfone (PES) membranes", J. Environ. Chem. Eng., 9(2). https://doi.org/10.1016/j.jece.2020.104755. 
  13. Celik Madenli, E. and Ciftci, Z.I. (2022), "Effects of the carbon nanotube and polymer amounts on ultrafiltration membranes", Environ. Eng. Res., 27(4), https://doi.org/10.4491/eer.2021.626. 
  14. Choi, H.G., Yoon, S.H., Son, M., Celik, E., Park, H. and Choi, H. (2016), "Efficacy of synthesis conditions on functionalized carbon nanotube blended cellulose acetate membrane for desalination", Desalin. Water Treat., 57(16), 7545-7554. http://doi.org/10.1080/19443994.2015.1025582. 
  15. Choi, J.H., Jegal, J. and Kim, W.N. (2006), "Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes", J. Membr. Sci., 284(1-2), 406-415. http://doi.org/10.1016/j.memsci.2006.08.013. 
  16. Foundation, A.R., eaux-Dumez, L.D. and Commission, S.A.W.R. (1996), Water Treatment Membrane Processes, McGraw-Hill. 
  17. Ge, S.J., Feng, L., Zhang, L.Q., Xu, Q., Yang, Y.F., Wang, Z.Y. and Kim, K.H. (2017), "Rejection rate and mechanisms of drugs in drinking water by nanofiltration technology", Environ. Eng. Res., 22(3), 329-338. http://doi.org/10.4491/eer.2016.157. 
  18. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, K. (2004), "Carbon nanotube-reinforced epoxy-compo sites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. http:// doi.org/10.1016/j.compscitech.2004.04.002. 
  19. Gray, S.R., Ritchie, C.B., Tran, T., Bolto, B.A., Greenwood, P., Busetti, F. and Allpike, B. (2008), "Effect of membrane character and solution chemistry on microfiltration performance", Water Res., 42(3), 743-753. http://doi.org/10.1016/j.watres.2007.08.005. 
  20. Han, M.J. and Nam, S.T. (2002), "Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane", J. Membr. Sci., 202(1-2), 55-61. https://doi.org/10.1016/S0376-7388(01)00718-9. 
  21. Hassan, A.R., Rozali, S., Safari, N.H.M. and Besar, B.H. (2018), "The roles of polyethersulfone and polyethylene glycol additive on nanofiltration of dyes and membrane morphologies", Environ. Eng. Res., 23(3), 316-322. http://doi.org/10.4491/eer.2018.023. 
  22. Jee, H., Jang, J., Kang, Y., Eisa, T., Chae, K.J., Kim, I.S. and Yang, E. (2022), "Enhancing the Dye-Rejection Efficiencies and Stability of Graphene Oxide-Based Nanofiltration membranes via Divalent Cation Intercalation and Mild Reduction", Membranes, 12(4). https://doi.org/10.3390/membranes12040402. 
  23. Kim, H.J., Choi, K., Baek, Y., Kim, D.G., Shim, J., Yoon, J. and Lee, J.C. (2014), "High-performance reverse osmosis CNT/ polyamide nanocomposite membrane by controlled interfacial interactions", ACS Appl. Mater. Interf., 6(4), 2819-2829. http://doi.org/10.1021/am405398f. 
  24. Lau, W.J. and Ismail, A.F. (2010), "Application of response surface methodology in PES/SPEEK blend NF membrane for dyeing solution treatment", Membr. Water Treat., 1(1), 49-60. https://doi.org/10.12989/mwt.2010.1.1.049 
  25. Liu, L., Son, M., Park, H., Celik, E., Bhattacharjee, C. and Choi, H. (2014), "Efficacy of CNT-bound polyelectrolyte membrane by spray-assisted layer-by-layer (LbL) technique on water purification", RSC Adv., 4(62), 32858-32865. http://doi.org/10.1039/c4ra05272b. 
  26. Mulder, M. (1996) Basic Principles of Membrane Technology, Springer Dordrecht. 
  27. Nechifor, G., Voicu, S.I., Nechifor, A.C. and Garea, S. (2009), "Nanostructured hybrid membrane polysulfone-carbon nanotubes for hemodialysis", Desalination, 241(1-3), 342-348. http://doi.org/10.1016/j.desal.2007.11.089. 
  28. Nurazzi, N.M., Asyraf, M.R.M., Khalina, A., Abdullah, N., Sabaruddin, F.A., Kamarudin, S.H., Ahmad, S., Mahat, A.M., Lee, C.L., Aisyah, H.A., Norrrahim, M.N.F., Ilyas, R.A., Harussani, M.M., Ishak, M.R. and Sapuan, S.M. (2021), "Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: an overview", Polymers, 13(7). https://doi.org/10.3390/polym13071047. 
  29. Park, S., Yang, E., Park, H. and Choi, H. (2020), "Fabrication of functionalized halloysite nanotube blended ultrafiltration membranes for high flux and fouling resistance", Environ. Eng. Res., 25(5), 771-778. http://doi.org/10.4491/eer.2019.402. 
  30. Peng, F.B., Hu, C.L. and Jiang, Z.Y. (2007), "Novel ploy(vinyl alcohol)/carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures", J. Membr. Sci., 297(1-2), 236-242. http://doi.org/10.1016/j.memsci.2007.03.048. 
  31. Qiu, S., Wu, L.G., Pan, X.J., Zhang, L., Chen, H.L. and Gao, C.J. (2009), "Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes", J. Membr. Sci., 342(1-2), 165-172. http://doi.org/10.1016/j.memsci.2009.06.041. 
  32. Qu, X.L., Alvarez, P.J.J. and Li, Q.L. (2013), "Applications of nanotechnology in water and wastewater treatment", Water Res., 47(12), 3931-3946. http://doi.org/10.1016/j.watres.2012.09.058. 
  33. Rashidi, H., Sulaiman, N.M.N., Hashim, N.A., Bradford, L., Asgharnejad, H. and Larijani, M.M. (2020), "Development of the ultra/nano filtration system for textile industry wastewater treatment", Membr. Water Treat., 11(5), 333-344. http://doi.org/10.12989/mwt.2020.11.5.333. 
  34. Reddy, A.S., Kalla, S. and Murthy, Z.V.P. (2022), "Textile wastewater treatment via membrane distillation", Environ. Eng. Res., 27(5). https://doi.org/10.4491/eer.2021.228. 
  35. Rong, C.R., Ma, G., Zhang, S.L., Song, L., Chen, Z., Wang, G.B. and Ajayan, P.M. (2010), "Effect of carbon nanotubes on the mechanical properties and crystallization behavior of poly(ether ether ketone)", Compos. Sci. Technol., 70(2), 380-386. http://doi.org/10.1016/j.compscitech.2009.11.024. 
  36. Sepahvand, S., Kargarzadeh, H., Jonoobi, M., Ashori, A., Ismaeilimoghadam, S., Varghese, R.T., Chirayl, C.J., Azimi, B. and Danti, S. (2023), "Recent developments in nanocellulosebased aerogels as air filters: A review, Int. J. Biol. Macromol., 246. https://doi.org/10.1016/j.ijbiomac.2023.125721. 
  37. Sun, M.P., Su, Y.L., Mu, C.X. and Jiang, Z.Y. (2010), "Improved Antifouling Property of PES Ultrafiltration Membranes Using Additive of Silica-PVP Nanocomposite", Ind. Eng. Chem. Res. 49(2), 790-796. http://doi.org/10.1021/ie900560e. 
  38. Wang, L., Song, X.J., Wang, T., Wang, S.Z., Wang, Z.N. and Gao, C.J. (2015), "Fabrication and characterization of polyethersulfone/carbon nanotubes (PES/CNTs) based membranes (MMMs) for nanofiltration application", Appl. Surf. Sci. 330, 118-125. http://doi.org/DOI 10.1016/j.apsusc.2014.12.183. 
  39. Yanar, N., Son, M., Park, H. and Choi, H. (2021), "Toward greener membranes with 3D printing technology", Environ. Eng. Res., 26(2), https://doi.org/10.4491/eer.2020.027. 
  40. Yang, Y., Nie, C.X., Deng, Y.Y., Cheng, C., He, C., Ma, L. and Zhao, C.S. (2016), "Improved antifouling and antimicrobial efficiency of ultrafiltration membranes with functional carbon nanotubes", RSC Adv., 6(91), 88265-88276. http://doi.org/10.1039/c6ra18706d. 
  41. Yang, Y.N., Zhang, H.X., Wang, P., Zheng, Q.Z. and Li, J. (2007), "The influence of nano-sized TiO2 fillers on the morphologies and properties of PSFUF membrane", J. Membr. Sci., 288(1-2), 231-238. http://doi.org/10.1016/j.memsci.2006.11.019. 
  42. Yu, F.Y., Zhang, Q.L., Pei, Z.Q., Li, X., Yang, X.X. and Lug, Y.B. (2022), "Preparation of high-performance nanofiltration membrane with antioxidant properties", Membr. Water Treat., 13(4), 191-199, http:// doi.org/10.12989/mwt.2022.13.4.191. 
  43. Zhao, H.Y., Qiu, S., Wu, L.G., Zhang, L., Chen, H.L. and Gao, C.J. (2014), "Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes", J. Membr. Sci., 450, 249-256. http:// doi.org/10.1016/j.memsci.2013.09.014.