DOI QR코드

DOI QR Code

Adsorption process efficiency of activated carbon from date pits in removing pollutants from dye wastewater

  • A. Ahsan (Department of Civil and Environmental Engineering, Islamic University of Technology) ;
  • I.K. Erabee (Department of Civil Engineering, College of Engineering, University of Thi-Qar) ;
  • F.B. Nazrul (Department of Civil and Environmental Engineering, Islamic University of Technology) ;
  • M. Imteaz (Department of Civil and Construction Engineering, Swinburne University of Technology) ;
  • M.M. El-Sergany (School of Health and Environmental Studies, Hamdan Bin Mohammed Smart University) ;
  • S. Shams (Civil Engineering Programme Area, Universiti Teknologi Brunei) ;
  • Md. Shafiquzzaman (Department of Civil Engineering, College of Engineering, Qassim University)
  • 투고 : 2021.04.27
  • 심사 : 2023.11.26
  • 발행 : 2023.07.25

초록

The presence of high amounts of organic and inorganic contaminants in textile wastewater is a major environmental concern. Therefore, the treatment of textile wastewater is an urgent issue to save the aquatic environment. The disposal of large quantities of untreated textile wastewater into inland water bodies can cause serious water pollution. In this study, synthetic dye wastewater samples were prepared using orange dye in the laboratory. The synthetic samples were then treated by a batch adsorption process using the prepared activated carbon (AC) from date pits. The wastewater parameters studied were the pH, total dissolved solids (TDS), total suspended solids (TSS), electrical conductivity (EC) and salinity. The activated adsorption process showed that the maximum removal efficiencies of electric conductivity (EC), salinity, TDS and TSS were 65%, 92%, 89% and 90%, respectively. The removal efficiencies were proportional to the increase in contact time (30-120 min) and AC adsorbent dose (1, 3 and 5 g/L). The adsorption profile indicates that 5 g/L of adsorbent delivers better results for TDS, EC, TSS and salinity at contact time of 120 min. The adsorption characteristics are better suited to the pseudo-second-order kinetic model than to the pseudo-first-order kinetic model. The Langmuir and Freundlich isotherms were well suited for describing the adsorption or contact behavior of EC and TSS within the studied system.

키워드

참고문헌

  1. Abbasi, M., Rasouli, Y. and Jowkar, P. (2018), "Application of ANN modeling for oily wastewater treatment by hybrid PAC-MF process", Membr. Water Treat., 9(4), 285-292. http://doi.org/10.12989/mwt.2018.9.4.285
  2. Ab Ghani, Z., Yusoff, M.S. and Andas, J. (2016), "Development of activated carbon from banana pseudo-stem via single step of chemical activation", AIP Conference Proceedings, 1774(1), 020007, AIP, USA, October. https://doi.org/10.1063/1.4965055
  3. Ahmed, S.M., Zhou, B., Zhao, H., Zheng, Y.P., Wang, Y. and Xia, S. (2020), "Preparation, characterization of activated carbon fiber from luffa and its application in CVFCW for rainwater treatment", Membr. Water Treat., 11(2), 151-158. https://doi.org/10.12989/mwt.2020.11.2.151
  4. Ahsan, A., Ahmed, T., Uddin, M.A., Al-Sulttani, A.O., Shafiquzzaman, M., Islam, M.R., Ahmed, M.S., Alamin, Mohadesh, M., Haque, M.N. and Al-Mutiry, M., (2023), "Evaluation of Water Quality Index (WQI) in and around dhaka city using groundwater quality parameters", Water, 15(14), 2666. https://doi.org/10.3390/w15142666
  5. Ali, I., Aboul-Enein, H.Y. and Chiral, Y. (2004), Pollutants: Distribution, toxicity and analysis by chromatography and capillary electrophoresis, Wiley & Sons, Chichester, England.
  6. Ali, I., Asim, M., Tabrez, K.A. (2012), "Low cost adsorbents for the removal of organic pollutants from wastewater", J. Environ. Manag., 113, 170-183. https://doi.org/10.1016/j.jenvman.2012.08.028
  7. Alighardashi, A., Pakan, M., Jamshidi, S. and Shariati, F.P. (2017), "Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment", Membr. Water Treat., 8(6), 517-528. https://doi.org/10.12989/mwt.2017.8.6.517
  8. Ampiaw, R.E., Yaqub, M. and Lee, W. (2019), "Adsorption of microcystin onto activated carbon: A review", Membr. Water Treat., 10(6), 405-415. https://doi.org/10.12989/mwt.2019.10.6.405
  9. APHA (2005), Standard methods for examination of water and wastewater, 21st ed, Washington D.C., U.S.A.
  10. Azaman, S.H., Afandi, A., Hameed, B.H. and Din, A.M. (2018) "Removal of malachite green from aqueous phase using coconut shell activated carbon: Adsorption, desorption, and reusability studies", J. Appl. Sci. Eng., 21(3), 317-330. https://doi.org/10.6180/jase.201809_21(3).0003
  11. Baccar R. (2013), "Removal of some water contaminants by adsorption on activated carbon prepared from olive-waste cakes and biological treatment using fungi", PhD thesis, Sfax University, Chemical Engineering Department.
  12. Butler, B.A. and Ford, R.G. (2018), "Evaluating relationships between total dissolved solids (TDS) and total suspended solids (TSS) in a mining-influenced watershed", Mine Water. Environ., 37(1), 18-30. https://doi.org/10.1007/s10230-017-0484-y
  13. Crini, G. (2005), "Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment", Prog. Polym. Sci., 30, 38-70. https://doi.org/10.1016/j.progpolymsci.2004.11.002
  14. Dada, A.O., Olalekan, A.P., Olatunya, A.M. and Dada, O.J.I.J.C. (2012) "Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk", IOSR J. Appl. Chem., 3(1), 38-45. https://doi.org/10.9790/5736-0313845
  15. Damia, B. (2005), Emerging Organic Pollutants in Waste Waters and Sludge, Springer, Berlin, Germany.
  16. Derbyshire, F., Andrews, R., Jaques, D., Jagtoyen, M., Kimber, G. and Rentell, T. (2001), "Synthesis of isotropic carbon fibers and activated carbon fibers from pitch precursors", Fuel, 80(3), 345-356. https://doi.org/10.1016/S0016-2361(00)00099-5
  17. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Riverra-Urtella, J. and Sanchez-Polo, M. (2007), "Waste materials for activated carbon preparation and its use in aqueous phase treatment: A review", J. Environmental Management, 85, 833-846. https://doi.org/10.1016/j.jenvman.2007.07.031
  18. El-Gawad, S.A.A. and El-Aziz, H.M.A., (2018), "Effective removal of chemical oxygen demand and phosphates from aqueous medium using entrapped activated carbon in alginate", MOJ Biol. Med, 3(6). https://10.15406/mojbm.2018.03.00104
  19. El Said, N. and Kassem, A.T. (2018), "Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites", Membr. Water Treat., 9(5), 327-334. https://doi.org/10.12989/mwt.2018.9.5.327
  20. EnviroCarbon, EnviroCarbon Sdn. Bhd., Malaysia. https://envirocarbon.com.my/1-AC1.0.htm
  21. Erabee, I.K., Ahsan, A., Zularisam, A.W., Idrus, S., Daud, N.N.N., Arunkumar, T., Sathyamurthy, R. and Al-Rawajfeh, A. (2017a), "A new activated carbon prepared from sago palm bark through physiochemical activated process with zinc chloride", Eng. J., 21(5), 1-14. https://doi.org/10.4186/ej.2017.21.5.1
  22. Erabee, I.K., Ahsan, A., Daud, N.N.N., Idrus, S., Shams, S., Md Din, M.F. and Rezania, S (2017b), "Manufacture of low-cost activated carbon using sago palm bark and date pits by physiochemical activation", BioResources 12(1), 1916-1923. https://doi.org/10.15376/BIORES.12.1.1916-1923
  23. Fawcett-Hirst, W., Temple, T.J., Ladyman, M.K. and Coulon, F. (2020), "Adsorption behaviour of 1, 3, 5-trinitroperhydro-1, 3, 5-triazine, 2, 4-dinitroanisole and 3-nitro-1, 2, 4-triazol-5-one on commercial activated carbons", Chemosphere, 255, 126848. https://doi.org/10.1016/j.chemosphere.2020.126848
  24. Fueyo, G., GutieRrez, A. and Berrueta, J. (2003), "Kinetics of anaerobic treatment of landfill leachates combined with urban wastewaters", Waste Manag. Res., 21(2), 145-154. https://doi.org/10.1177/0734242X0302100208
  25. Gaballah, N.M., Goher, M.E., El Saadi, A.M., Abd El-rehim, S.S. and Shalabi, M.E.H. (2018), "Removal capacity of cadmium in aqueous solution via activated carbon of coke breeze and date seeds", Int. J. Multidiscipl. Res. Public., 1(6), 5-12. https://doi.org/10.5281/zenodo.2538539
  26. Gottipati, R. (2012), "Preparation and characterization of microporous activated carbon from biomass and its application in the removal of chromium (VI)", Ph.D. Dissertation, National Institute of Technology, Rourkela, India.
  27. Guahk, Y.T., Jeon, M., Moon, S., Ohm, T. and Kim, S.G. (2021), "Feasibility of regenerative adsorption of a hydrofluorocarbon (HFC-134a) using activated carbon fiber studied by the gaseous flow method", J. Hazard. Mater., 411, 125009. https://doi.org/10.1016/j.jhazmat.2020.125009
  28. Gupta, V.K., Mittal, A., Jain R., Mathur M. and Sikarwar S. (2006), "Adsorption of safranin-T from wastewater using waste materials-activated carbon and activated rice husks", J. Colloid Interf. Sci., 303, 80-86. https://doi.org/10.1016/j.jcis.2006.07.036
  29. Ingole, P.G., Sawant, S.Y., Ingole, N.P., Pawar, R.R., Bajaj, H.C., Singh, K., Cho, M.H. and Lee, H.K. (2016), "Preparation of activated carbon incorporated polysulfone membranes for dye separation", Membr. Water Treat., 7(6), 477-493. https://doi.org/10.12989/mwt.2016.7.6.477
  30. Inyinbor, A.A., Adekola, F.A. and Olatunji, G.A. (2016) "Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp", Water Resour. Ind., 15, 14-27. https://doi.org/10.1016/j.wri.2016.06.001
  31. Kadlec, R.H. and Wallace, S. (2008) "Treatment wetlands", CRC press, Boca Raton. https://doi.org/10.1201/9781420012514
  32. Karim, M.R., Khan, H.R.B., Ahsan, A., Rahadujjaman, M., Alam, S., Hasan, R., Sharif, T.T. and Farooq, S., (2023), "Potential health hazard of drinking water in restaurants and tea stalls", Environ. Quality Manag., 32(4), 53-63. https://doi.org/10.1002/tqem.21939
  33. Kassem, M.A. and El-Sayed, G.O. (2014), "Adsorption of Tartrazine on medical activated charcoal tablets under controlled conditions", J. Environ. Anal. Chem., 1(1), 102. https://doi.org/10.4172/2380-2391.1000102
  34. Khaleel, M.R., Ahsan, A., Imteaz, M., El-Sergany, M.M., Daud, N.N., Mohamed, T.A. and Ibrahim, B.A. (2015), "Performance of GACC and GACP to treat institutional wastewater: A sustainable technique", Membr. Water Treat., 6(4), 339-349. https://doi.org/10.12989/mwt.2015.6.4.339
  35. Li, Z., Jin, Y., Chen, T., Tang, F., Cai, J. and Ma, J. (2021), "Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity", Sep. Purif. Technol., 272, 118659. https://doi.org/10.1016/j.seppur.2021.118659
  36. Liu, H.B., Yang, B. and Xue, N.D., (2016), "Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume", J. Hazard. Mater., 318, 425-432. https://doi.org/10.1016/j.jhazmat.2016.07.026
  37. Mechnou, I., Meskini, S., Mourtah, I., Lebrun, L. and Hlaibi, M., (2023), "Use of phosphorus-doped microporous carbon from olive mill wastewater for effective removal of crystal violet and methylene blue", J. Clean. Prod., 393, 136333. https://doi.org/10.1016/j.jclepro.2023.136333
  38. Moradi, O. and Zare, K. (2013) "Adsorption of ammonium ion by multi-walled carbon nanotube: kinetics and thermodynamic studies", Fuller. Nanotubes Carbon Nanostruct., 21(6), 449-459. https://doi.org/10.1080/1536383X.2011.613538
  39. Moreno-Castilla, C. (2004), "Adsorption of organic molecules from aqueous solutions on carbon materials", Carbon, 42(1), 83-94. https://doi.org/10.1016/j.carbon.2003.09.022
  40. Pennington, J.C. and Brannon, J.M., (2002), "Environmental fate of explosives", Thermochimica Acta, 384(1-2), 163-172. https://doi.org/10.1016/S0040-6031(01)00801-2
  41. Rice, E.W., Baird, R.B., Eaton, A.D. and Clesceri, L.S. (2012), "Standard methods for the examination of water and wastewater", 22nd ed., American Public Health Assoc, American Water Works Assoc, Method 2540, Water Environment Federation, Washington D.C., U.S.A.
  42. Robinson, H.D. and Gronow, J.R. (1993), "A review of landfill leachate composition in the UK", IWM Proceedings, 3-8.
  43. Saeed, T., Naeem, A., Din, I.U., Farooq, M., Khan, I.W., Hamayun, M. and Malik, T., (2022), "Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes, kinetic and thermodynamic approach", J. Hazard. Mater., 427, p.127902. https://doi.org/10.1016/j.jhazmat.2021.127902
  44. Salman, S.D., Rasheed, I.M. and Mohammed, A.K. (2021), "Adsorption of heavy metal ions using activated carbon derived from Eichhornia (water hyacinth)", Proceedings of the IOP Conference Series: Earth and Environmental Science, 779(1), 012074, IOP Publishing, U.K., June. http://doi.org/10.1088/1755-1315/779/1/012074
  45. Tomati, U., Galli, E., Pasetti, L. and Volterra, E. (1995), "Bioremediation of olive-mill wastewaters by composting", Waste Manag. Res., 13(5), 509-518. https://doi.org/10.1177%2F0734242X9501300602 https://doi.org/10.1177%2F0734242X9501300602
  46. Tran, T.H., Le, H.H., Pham, T.H., Nguyen, D.T., La, D.D., Chang, S.W., Lee, S.M., Chung, W.J. and Nguyen, D.D. (2021), "Comparative study on methylene blue adsorption behavior of coffee husk-derived activated carbon materials prepared using hydrothermal and soaking methods", J. Environ. Chem. Eng., 9(4), 105362. https://doi.org/10.1016/j.jece.2021.105362
  47. Wang, H., Li, Z., Yahyaoui, S., Hanafy, H., Seliem, M.K., Bonilla-Petriciolet, A., Dotto, G.L., Sellaoui, L. and Li, Q. (2020), "Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: Experiments, characterization and advanced modeling", Chem. Eng. J., 417, 128116. https://doi.org/10.1016/j.cej.2020.128116
  48. Wasilewska, M., Marczewski, A.W., Derylo-Marczewska, A. and Sternik, D. (2021), "Nitrophenols removal from aqueous solutions by activated carbon-temperature effect of adsorption kinetics and equilibrium", J. Environ. Chem. Eng., 9(4), 105459. https://doi.org/10.1016/j.jece.2021.105459
  49. Yangui, R.B.E. (2013), "Removal of some water contaminants by adsorption on activated carbon prepared from olive-waste cakes and biological treatment using fungi", Ph.D. Dissertation, University of Autonoma de Barcelona, Barcelona, Spain.
  50. Yin, R. and Shang, C. (2020), "Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption", Water Res., 185, 116297. https://doi.org/10.1016/j.watres.2020.116297
  51. Yoshikawa, Y., Teshima, K., Futamura, R., Tanaka, H., Iiyama, T. and Kaneko, K. (2021), "Structural adsorption mechanism of chloroform in narrow micropores of pitch-based activated carbon fibres", Carbon, 171, 681-688. https://doi.org/10.1016/j.carbon.2020.08.020
  52. Zhang, X., Li, Y., Zhang, Z., Nie, M., Wang, L. and Zhang, H. (2021), "Adsorption of condensable particulate matter from coal-fired flue gas by activated carbon", Sci. Total Environ., 778,146245. https://doi.org/10.1016/j.scitotenv.2021.146245