DOI QR코드

DOI QR Code

Constructing an Internet of things wetland monitoring device and a real-time wetland monitoring system

  • Chaewon Kang (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Kyungik Gil (Department of Civil Engineering, Seoul National University of Science and Technology)
  • Received : 2023.08.22
  • Accepted : 2023.09.17
  • Published : 2023.07.25

Abstract

Global climate change and urbanization have various demerits, such as water pollution, flood damage, and deterioration of water circulation. Thus, attention is drawn to Nature-based Solution (NbS) that solve environmental problems in ways that imitate nature. Among the NbS, urban wetlands are facilities that perform functions, such as removing pollutants from a city, improving water circulation, and providing ecological habitats, by strengthening original natural wetland pillars. Frequent monitoring and maintenance are essential for urban wetlands to maintain their performance; therefore, there is a need to apply the Internet of Things (IoT) technology to wetland monitoring. Therefore, in this study, we attempted to develop a real-time wetland monitoring device and interface. Temperature, water temperature, humidity, soil humidity, PM1, PM2.5, and PM10 were measured, and the measurements were taken at 10-minute intervals for three days in both indoor and wetland. Sensors suitable for conditions that needed to be measured and an Arduino MEGA 2560 were connected to enable sensing, and communication modules were connected to transmit data to real-time databases. The transmitted data were displayed on a developed web page. The data measured to verify the monitoring device were compared with data from the Korea meteorological administration and the Korea environment corporation, and the output and upward or downward trend were similar. Moreover, findings from a related patent search indicated that there are a minimal number of instances where information and communication technology (ICT) has been applied in wetland contexts. Hence, it is essential to consider further research, development, and implementation of ICT to address this gap. The results of this study could be the basis for time-series data analysis research using automation, machine learning, or deep learning in urban wetland maintenance.

Keywords

Acknowledgement

This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

References

  1. Cambra, C., Sendra, S., Lloret, J. and Garcia, L. (2017), "An IoT service-oriented system for agriculture monitoring", Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, May, 1-6. 
  2. Choi, H., Hong, J., Geronimo, F.K.F., and Kim, L.H. (2019), "Assessment of environmental impacts of LID technologies on vegetation.", Membr. Water Treat., 10(1), 39-44. https://doi.org/10.12989/mwt.2019.10.1.039 
  3. Choi, H., Hong, J., Jeon, M., Geronimo, F.K. and Kim, L. (2019), "Assessment of water circulation and hydro-characteristics with LID techniques in urbanized areas", J. Wetlands Res., 21(3), 191-198. 
  4. Diene, B., Rodrigues, J.J., Diallo, O., Ndoye, E.H.M. and Korotaev, V.V. (2020), "Data management techniques for internet of things", Mech. Syst. Signal Process., 138, 106564. https://doi.org/10.1016/j.ymssp.2019.106564 
  5. Drew, M.C. (1997), "Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia", Annu. Rev. Plant Physiol. Plant Mol. Biol., 48(1), 223-250.  https://doi.org/10.1146/annurev.arplant.48.1.223
  6. Dudhe, P.V., Kadam, N.V., Hushangabade, R.M. and Deshmukh, M.S. (2017), "Internet of things (IOT): an overview and its applications", Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, August, 2650-2653. 
  7. Gorham, E. (1991), "Northern peatlands: role in the carbon cycle and probable responses to climatic warming" Ecol. Appl., 1(2), 182-195. https://doi.org/10.2307/1941811. 
  8. Holden, J. (2005), "Peatland hydrology and carbon release: why small-scale process matters", Philos. Trans. A Math. Phys. Eng. Sci., 363(1837), 2891-2913. https://doi.org/10.1098/rsta.2005.1671. 
  9. International Patent Classification (IPC), World Intellectual Property Organization (WIPO), http://www.wipo.int/classifications/ipc/en/
  10. Jeon, J., Choi, H., Shin, D., and Kim, L. H. (2019), "Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring", Membr. Water Treat., 10(1), 99-104. https://doi.org/10.12989/mwt.2019.10.1.099 
  11. Kang, C.G., Lee, S.Y., Cho, H.J., Lee, Y.H. and Kim, L.H. (2011), "Test-bed evaluation of developed small constructed wetland for using in urban areas", J. Wetlands Res., 13(3), 455-463. 
  12. Kayranli, B., Scholz, M., Mustafa, A. and Hedmark, A . (2010), "Carbon storage and fluxes within freshwater wetlands: a critical review" Wetlands, 30(1), 111-124.  https://doi.org/10.1007/s13157-009-0003-4
  13. Keco (2022), Korea Environment Corporation Air korea, Incheon, Korea. https://www.airkorea.or.kr/web/?isPC=Y 
  14. Kim, D., Kim, J., Joo, H., Han, D. and Kim, H.S. (2019), "Future water quality analysis of the Anseongcheon River basin, Korea under climate change", Membr. Water Treat., 10(1), 001. https://doi.org/10.12989/mwt.2019.10.1.001. 
  15. KIPRIS (2023), Korea Intellectual Property Rights Information Service, Daejeon, Korea, http://www.kipris.or.kr/
  16. KMA (2022), Korea Meteorological Administration, Seoul, Korea. https://www.weather.go.kr/
  17. Knight, R., Cooper, P., Brix, H., Vymazal, J., Haberl, R. and Kadlec, R. (2000), Constructed Wetlands for Pollution Control, IWA publishing. 
  18. Kodali, R. K., Rajanarayanan, S. C., and Yadavilli, S. (2019), "IoT monitoring setup for waste water treatment.", 2019 IEEE R10 Humanitarian Technology Conference (R10-HTC), Depok, Indonesia, November, 12-14. 
  19. Kwak, S. and Yun, Z. (2020), "The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea", Membr. Water Treat., 11(5), 345. https://doi.org/10.12989/mwt.2020.11.5.345. 
  20. Lakshmikantha, V., Hiriyannagowda, A., Manjunath, A., Patted, A., Basavaiah, J., and Anthony, A. A. (2021), "IoT based smart water quality monitoring system.", Global Transitions Proceedings, 2(2), 181-186. https://doi.org/10.1016/j.gltp.2021.08.062 
  21. Laskov, C., Horn, O. and Hupfer, M. (2006), "Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus", Aquat. Bot., 84(4), 333-340. https://doi.org/10.1016/j.aquabot.2005.12.005 
  22. Lee, J., Bae, S., Lee, W.H. and Gil, K. (2022), "Effect of surface area to catchment area ratio on pollutant removal efficiency in vegetation-type facilities", Ecol. Eng., 179, 106609. https://doi.org/10.1016/j.ecoleng.2022.106609. 
  23. Li, C., Huang, Y., Guo, H., Wu, G., Wang, Y., Li, W., and Cui, L. (2019), "The concentrations and removal effects of PM10 and PM2.5 on a wetland in Beijing.", Sustainability., 11(5), 1312. https://doi.org/10.3390/su11051312 
  24. Liquete, C., Udias, A., Conte, G., Grizzetti, B. and Masi, F. (2016), "Integrated valuation of a nature-based solution for water pollution control: Highlighting hidden benefits", Ecosyst. Serv., 22, 392-401. https://doi.org/10.1016/j.ecoser.2016.09.011. 
  25. Maniquiz-Redillas, M., Robles, M.E., Cruz, G., Reyes, N.J. and Kim, L.H. (2022), "First flush stormwater runoff in urban catchments: A bibliometric and comprehensive review", Hydrology, 9(4), 63. https://doi.org/10.3390/hydrology9040063. 
  26. Mitra, S., Wassmann, R. and Vlek, P.L. (2005), "An appraisal of global wetland area and its organic carbon stock", Curr. Sci., 88(1), 25-35. 
  27. Mitsch, W.J. and Gosselink, J.G. (2007), Wetlands 4th edition, Wiley, New York, USA. 
  28. Pezeshki, S.R. and DeLaune, R.D. (2012), "Soil oxidation-reduction in wetlands and its impact on plant functioning", Biology, 1(2), 196-221. https://doi.org/10.3390/biology1020196 
  29. Salim, I., Paule-Mercado, M.C., Sajjad, R.U., Memon, S.A., Lee, B.Y., Sukhbaatar, C. and Lee, C.H. (2019). "Trend analysis of rainfall characteristics and its impact on stormwater runoff quality from urban and agricultural catchment", Membr. Water Treat., 10(1), 45-55. https://doi.org/10.12989/mwt.2019.10.1.047. 
  30. Srivastava, P., Bajaj, M., and Rana, A. S. (2018). "Overview of ESP8266 Wi-Fi module based smart irrigation system using IOT.", In 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Chennai, India, February, 1-5. 
  31. Sungji, K., Jiwon, L. and Kyungik, G. (2020), "Inflow and outflow event mean concentration analysis of contaminants in bioretention facilities for non-point pollution management", Ecol. Eng., 147, 105757. https://doi.org/10.1016/j.ecoleng.2020.105757. 
  32. Voesenek, L.A.C.J., Colmer, T.D., Pierik, R., Millenaar, F.F. and Peeters, A.J.M. (2006), "How plants cope with complete submergence", New Phytol., 170(2), 213-226. https://doi.org/10.1111/j.1469-8137.2006.01692.x 
  33. Wang, Y.S. and Gu, J.D. (2021), "Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities", Int. Biodeterior. Biodegrad., 162, 105248. https://doi.org/10.1016/j.ibiod.2021.105248. 
  34. Wu, S., Lyu, T., Zhao, Y., Vymazal, J., Arias, C.A. and Brix, H. (2018), "Rethinking intensification of constructed wetlands as a green eco-technology for wastewater treatment", Environ. Sci. Technol., 52(4), 1693-1694. https://doi.org/10.1021/acs.est.8b00010.