DOI QR코드

DOI QR Code

Characteristics of micro-plastics in stormwater sediment basin: Case study of J wetland

  • Jiyeol Im (Department of Urban Policy Research, Goyang Research Institute) ;
  • Kyungik Gil (Department of Civil Engineering, Seoul National University of Science and Technology)
  • Received : 2023.08.14
  • Accepted : 2023.09.20
  • Published : 2023.07.25

Abstract

Urbanization has been causing such new pollutants as micro-plastic, thus the environmental impact of new pollutants on ecosystem is rapidly increasing. When it comes to micro-plastic, a representative artificial trace pollutant, its risk has been increased at a much faster rate, however the depth study associated with stormwater sediment and wetland was relatively rare. In this research, soil samples from storm water sediment were analyzed for distribution characteristics of micro-plastics in the J wetland (registered as Ramsar wetland, May 2021 and a representative environmental site in South Korea). Analyzed soil samples found approximately 201 ± 93 particle/kg (based on unit weight, Total micro plastic particles / Total Sample weight) micro-plastics in the samples. When considering the total quantitative numbers in stormwater sediment in the entire area of the J wetland, over 15,000 micro-plastics were estimated to be contaminating such area. In addition, in terms of qualitative numbers, micro-plastics were contaminating the J wetland with 94.7 % ratio of styrofoam type (43.9%) and polyethylene type (50.8%). These research results can be used as base data sets for controlling micro-plastics in the J wetland.

Keywords

Acknowledgement

This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

References

  1. Carr, S.A., Liu, J. and Tesoro, A.G. (2016), "Transport and fate of micro-plastic particles in wastewater treatment plants", J. Water Res., 91, 174-182. https://doi.org/10.1016/j.watres.2016.01.002. 
  2. Chae, D.H., Kim, I.S., Song, Y.K., Kim, S.W. and Kim, S.K. (2014), "Development of analysis method for micro-plastics in seawater", J. Korean Soc. Oceanograph., 19, 88-98. https://doi.org/10.7850/jkso.2014.19.1.88. 
  3. Choi, H., Hong, J., Geronimo, F.K.F. and Kim, L.H. (2019), "Assessment of environmental impacts of LID technologies on vegetation", Membr. Water Treat., 10(1), 039-44. https://doi.org/10.12989/mwt.2019.10.1.039. 
  4. Hong, Y.S., Hull, P., Rifkin, E. and Bouwer, E.J. (2013), "Bioaccumulation and biomagnification of mercury and selenium in the Sarasota Bay ecosystem", Environ. Toxicol. Chem., 32(5), 1143-1152. https://doi.org/10.1002/etc.2169. 
  5. Jeon, J., Choi, H., Shin, D. and Kim, L. H. (2019), "Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring", Membr. Water Treat., 10(1), 99-104. https://doi.org/10.12989/mwt.2019.10.1.099. 
  6. Jeong, D.H., Ju, B.K., Lee, W.S, Chung, H.M., Park, J.W. and Kim, C.S. (2018), "A mini-review on discharge characteristics and management of micro-plastics in sewage treatment plant", Journal of Korean Society of Water and Wastewater, 32, 337-348. https://doi.org/10.11001/jksww.2018.32.4.337. 
  7. Kershaw, P.J. and Rochman, C.M. (2015), "Sources, fate and effects of micro-plastics in the marine environment: part 2 of a global assessment". Reports and Studies-IMO/FAO/Unesco-IOC/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) Eng No. 93. https://doi.org/10.13140/RG.2.1.3803.7925. 
  8. Kim, D., Kim, J., Joo, H., Han, D. and Kim, H.S. (2019), "Future water quality analysis of the Anseongcheon River basin, Korea under climate change", Membr. Water Treat., 10(1), 1. https://doi.org/10.12989/mwt.2019.10.1.001. 
  9. Kim, J.Y., Myeong, H.A., Son, S.B. and Kwon, K.D. (2020), "Application of quartz crystal microbalance to understanding the transport of microplastics in soil and groundwater", Korean J. Mineral. Petrol., 33(4), 463-475. https://doi.org/10.22807/KJMP.2020.33.4.463. 
  10. Kim, N.Y., Kim, B.G. and Lee, E.H. (2022a), "Source and route of microplastics in terrestrial, atmospheric, and aquatic environments, and effects of microplastics on organisms", J. Korean Soc. Environ. Eng., 44(11), 453-467. https://doi.org/10.4491/KSEE.2022.44.11.453. 
  11. Kim, S.O., Jo, E.H. and Choi, S.H. (2022b), "Microplastic release from damaged commercial teabags", J. Membr. Water Treat., 13(1), 21-28. https://doi.org/10.12989/mwt.2022.13.1.021. 
  12. Kim, S.R. and Gil, K. (2022c) "Evaluation of microplastic in the inflow of municipal wastewater treatment plant according to pretreatment methods", J. Wetlands Res., 24(2), 83-92. https://doi.org/10.17663/JWR.2022.24.2.83. 
  13. Kwak, S. and Yun, Z. (2020), "The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea", Membr. Water Treat., 11(5), 345. https://doi.org/10.12989/mwt.2020.11.5.345. 
  14. Lee, R.R, Jho, E.H. and An, J.S. (2023) "Sorption of Pb and Cu on different types of microplastics", J. Membr. Water Treat., 14(1), 19-25. https://doi.org/10.12989/mwt.2023.14.1.019. 
  15. Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W.J., Yin, N., Chen, T. and Zhang, Y. (2020), "Effective uptake of submicrometre plastics by crop plants via a crack-entry mode", Nature Sust., 3(11), 929-937. https://doi.org/10.1038/s41893-020-0567-9. 
  16. Mason, S.A., Garneau, D., Sutton, R., Chu Y., Ehmann, K., Barnes, J., Fink, P., Papazissimos, D. and Rogers, D.L. (2016), "Micro-plastic pollution is widely detected in US municipal wastewater treatment plant effluent", Environ. Pollut., 218, 1045-1054. https://doi.org/10.1016/j.envpol.2016.08.056. 
  17. Mintentig, S.M., Int-Vee, I., Loder, M.G.J. and Gerdts, G. (2017), "Identification of micro-plastic in effluents of waste water treatment plants using focal plane array-based micro- Fourier-transform infrared imaging", Water Res., 108, 365-372. https://doi.org/10.1016/j.watres.2016.11.015. 
  18. Murphy, F., Ewins, C., Carbonnier, F. and Quinn, B. (2016), "Wastewater treatment works (WWTW) as a source of micro-plastics in the aquatic environment", Environ. Sci. Technol., 50, 5800-5808. https://doi.org/10.1021/acs.est.5b05416. 
  19. National Institute of Environmental Research (NIER) (2016), "Studies on the investigation method of micro-plastic in the freshwater", pp. 21-26. 
  20. Oh, S. and Lee, D.G. (2021) "A review of research trends in microplastic analysis in an aquatic system", Korean Chem. Eng. Res., 59(3), 316-325. https://doi.org/10.9713/kcer.2021.59.3.316. 
  21. Riaz, A., Ansley, K.H., Samuel, A.K., Jianzhou, H. and Dengjun, W. (2022), "Critical review of microplastics removal from the environment", Chemosphere, 293. https://doi.org/10.1016/j.chemosphere.2022.133557. 
  22. Salim, I., Paule-Mercado, M.C., Sajjad, R.U., Memon, S.A., Lee, B.Y., Sukhbaatar, C. and Lee, C.H. (2019), "Trend analysis of rainfall characteristics and its impact on stormwater runoff quality from urban and agricultural catchment", Membr. Water Treat., 10(1), 45-55. https://doi.org/10.12989/mwt.2019.10.1.047. 
  23. Swedish Environmental Research Institute (SERI) (2014), "Screening of micro-plastic particles in and down-stream a wastewater treatment plant", Report C55. 
  24. Swedish Environmental Research Institute (SERI) (2016), "Microlitter in sewage treatment systems: A Nordic perspective on waste water treatment plants as pathways for microscopic anthropogenic particles to marine systems", Report C194. 
  25. Talvitie, J., Mikola, A., Koistinen, A. and Setala, O. (2017), "Solutions to micro-plastic pollution - Removal of micro-plastics from wastewater effluent with advanced wastewater treatment technologies", Water Res., 123, 401-407. https://doi.org/10.1016/j.watres.2017.07.005. 
  26. Ziajahromi, S., Neale, P.A., Rintoul, L. and Leusch, F.D.L. (2017), "Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewaterbased micro-plastics", Water Res., 112, 93-99. https://doi.org/10.1016/j.watres.2017.01.042.