과제정보
This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brazil (CAPES) - Finance Code 001, and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Grants 308105/2021-4 and 303221/2022-4), and FAPEMIG (Grants TEC PPM-00174-18 and APQ-00869-22).
참고문헌
- ABNT (1988), NBR 6123: Forcas devidas ao vento em edificacoes, ABNT Editora, Rio de Janeiro, Brasil.
- ABNT (2002), NBR 8681: Acoes e seguranca nas estruturas - Procedimento, ABNT Editora, Rio de Janeiro, Brasil.
- ABNT (2008), NBR 8800: Projeto de estruturas de aco e de estruturas mistas de aco e concreto de edificios, ABNT Editora, Rio de Janeiro, Brasil.
- Akbulut, M., Sarac, A. and Ertas, A.H. (2020), "An investigation of non-linear optimization methods on composite structures under vibration and buckling loads", Adv. Comput. Des., 5(3), 209-231. https://doi.org/10.12989/acd.2017.2.4.313.
- ANSI (2016), \textit{AISC 360-16 Specification for Structural Steel Buildings}, AISC, Chicago, U.S.A.
- Babaei, M. and Sanaei, E. (2016), "Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization", Front. Struct. Civil Eng., 10(4), 472-480. https://doi.org/10.1007/s11709-016-0368-4.
- Baradaran, M. and Madhkhan, M. (2019), "Determination of optimal configuration for mega bracing systems in steel frames using genetic algorithm", KSCE J. Civil Eng., 23(8), 3616-3627. https://doi.org/10.1007/s12205-019-2369-z.
- Barraza, M., Bojorquez, E., Fernandez-Gonzalez, E. and Reyes-Salazar, A. (2017), "Multi-objective optimization of structural steel buildings under earthquake loads using nsga-ii and pso", KSCE J. Civil Eng., 21(2), 488-500. https://doi.orh/10.1007/s12205-017-1488-7.
- Braga, F., Gigliotti, R. and Laguardia, R. (2019), "Intervention cost optimization of bracing systems with multiperformance criteria'", Eng. Struct., 182, 185-197. https://doi.org/10.1016/j.engstruct.2018.12.034.
- Burton, H.V., Lee, J.Y., Moradi, S. and Dastmalchi, S. (2019), "Multi-objective performance-based design optimization of a controlled rocking steel braced frame system", Resil. Struct. Infrastruct., 243-268.
- Carvalho, J., Carvalho, E., Vargas, D., Hallak, P., Lima, B. and Lemonge, A. (2021), "Multi-objective optimum design of truss structures using differential evolution algorithms", Comput. Struct., 252, 106544. https://doi.org/10.1016/j.compstruc.2021.106544.
- Cascone, F., Faiella, D., Tomei, V., Lima, B. and Mele, E. (2021), "A structural grammar approach for the generative design of diagrid-like structures", Buildings, 11(3), 90. https://doi.org/10.3390/buildings11030090.
- Deb, K. (2001), Multi-objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Kanpur, UP, India.
- Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE T. Evolution. Comput., 6(2), 182-197. https://doi.org/10.1109/4235.996017.
- Do, B. and Ohsaki, M. (2021), "Gaussian mixture model for robust design optimization of planar steel frames", Struct. Multidiscipl. Opt., 63(1), 137-160. https://doi.org/10.1007/s00158-020-02676-3.
- Elkassas, E. and Swelem, S. (2012), "Optimization of bracing systems using neural networks", Proceedings of the Eighth International Conference on Engineering Computational Technology, Labuan, August.
- Farahmand-Tabar, S. and Ashtari, P. (2020), "Simultaneous size and topology optimization of 3d outrigger-braced tall buildings with inclined belt truss using genetic algorithm", Struct. Des. Tall Special Build., 29(13). https://doi.org/10.1002/tal.1776.
- Felippa, C.A. (2004), Introduction to Finite Element Methods, University of Colorado, Boulder, CO, U.S.A.
- Ghasemof, A., Mirtaheri, M. and Mohammadi, R.K. (2021), "A new swift algorithm for bi-objective optimum design of steel moment frames'", J. Build. Eng., 39, 102162. https://doi.org/10.1016/j.jobe.2021.102162.
- Gholizadeh, S. and Fattahi, F. (2021), "Multi-objective design optimization of steel moment frames considering seismic collapse safety", Eng. Comput., 37(2), 1315-1328. https://doi.org/10.1007/s00366-019-00886-y.
- Gholizadeh, S. and Poorhoseini, H. (2016), "Seismic layout optimization of steel braced frames by an improved dolphin echolocation algorithm", Struct. Multidiscipl. Opt., 54(4), 1011-1029. https://doi.org/10.1007/s00158-016-1461-y.
- Gholizadeh, S. and Baghchevan, A. (2017), "Multi-objective seismic design optimization of steel frames by a chaotic meta-heuristic algorithm", Eng. Comput., 33(4), 1045-1060. https://doi.org/10.1007/s00366-017-0515-0.
- Hasancebi, O. (2017), "Cost efficiency analyses of steel frameworks for economical design of multi-storey buildings", J. Constr. Steel Res., 128, 380-396. https://doi.org/10.1016/j.jcsr.2016.09.002.
- Ishibuchi, H., Masuda, H., Tanigaki, Y. and Nojima, Y. (2015), "Modified distance calculation in generational distance and inverted generational distance", Proceedings of the Evolutionary Multi-Criterion Optimization: 8th International Conference, Guimaraes, Portugal, March.
- Kaveh, A. and Bakhshpoori, T. (2016), "An efficient multi-objective cuckoo search algorithm for design optimization", Adv. Comput. Des., 1(1), 87-103. http://doi.org/10.12989/acd.2016.1.1.087.
- Kaveh, A. and Farhoudi, N. (2015), "Layout optimization of braced frames using differential evolution algorithm and dolphin echolocation optimization", Periodica Polytechnica Civil Eng., 59(3), 441-449. https://doi.org/10.3311/PPci.8155.
- Kaveh, A. and Ilchi Ghazaan, M. (2016), "Truss optimization with dynamic constraints using UECBO", Adv. Comput. Des., 1(2), 119-138. http://doi.org/10.12989/acd.2016.1.2.119.
- Kaveh, A. and Rezaei, M. (2016), "Topology and geometry optimization of different types of domes using ecbo", Adv. Comput. Des., 1(1), 1-25. http://doi.org/10.12989/acd.2016.1.1.001.
- Kaveh, A., Vaez, S.R.H., Hosseini, P. and Ezzati, E. (2018), "Layout optimization of planar braced frames using modified dolphin monitoring operator", Periodica Polytechnica Civil Eng., 62(3), 717-731. ttps://doi.org/10.3311/PPci.11654.
- Khaledy, N., Habibi, A. and Memarzadeh, P. (2019), "Multi-objective optimisation of steel moment frames subjected to blast", Int. J. Struct.l Eng., 10(1), 77-94. https://doi.org/10.1504/IJSTRUCTE.2019.101436.
- Kicinger, R. and Arciszewski, T. (2004), "Multiobjective evolutionary design of steel structures in tall buildings", Proceedings of the AIAA 1st Intelligent Systems Technical Conference, Chicago, U.S.A., September.
- Kicinger, R., Obayashi, S. and Arciszewski, T. (2007), "Evolutionary multiobjective optimization of steel structural systems in tall buildings", Proceedings of the Evolutionary Multi-Criterion Optimization 4th International Conference, Matsushima, Japan, March.
- Kizilkan, M. (2010), "Investigating the effect of column orientations on minimum weight design of steel frames", Master's thesis, Middle East Technical University, Ancara, Turkey.
- Kukkonen, S. and Lampinen, J. (2005), "GDE3: The third evolution step of generalized differential evolution", Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, U.K., September.
- Lemonge, A.C. and Barbosa, H.J. (2012), "Design optimization of space framed structures using multiple cardinality constraint", Proceedings of the 3rd International Conference on Engineering Optimization, Rio de Janeiro, Brazil, July.
- Li, M., Zhen, L. and Yao, X. (2017), "How to read many-objective solution sets in parallel coordinates [educational forum]", IEEE Comput. Intell. Magazine, 12(4), 88-100. https://doi.org/10.1109/MCI.2017.2742869.
- Li, M., Burns, S.A. and Wen, Y.K. (2005), "Multiobjective optimization for performance-based seismic design of steel moment frame structures", Earthq. Eng. Struct. Dyn., 34(3), 289-306. https://doi.org/10.1061/40700(2004)148.
- Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
- Motta, J., Resende, C., Lemonge, A., Hallak, P. and Carvalho, J. (2021), "Optimal orientation of crosssections of columns of 3D steel frames in a single and multi-objective optimization", Proceedings of the XLII Ibero-Latin-American Congress on Computational Methods in Engineering, Rio de Janeiro, Brazil, November.
- Panagant, N., Bureerat, S. and Tai, K. (2019), "A novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variables", Struct. Multidiscipl. Opt., 60(5), 1937-1955. https://10.1007/s00158-019-02302-x.
- Papadrakakis, M., Lagaros, N. and Plevris, V. (2002), "Multi-objective optimization of skeletal structures under static and seismic loading conditions'", Eng. Opt., 34(6), 645-669. https://doi.org/10.1080/03052150215716.
- Parreiras, R. and Vasconcelos, J. (2005), "Decision making in multiobjective optimization problems'", ISE Book Series on Real Word Multi-Objective System Engineering, Nova Science, New York, U.S.A., 1-20.
- Parreiras, R. and Vasconcelos, J. (2009), "Decision making in multiobjective optimization aided by the multicriteria tournament decision method", Nonlinear Anal. Theor., 71(12), 191-198. https://doi.org/10.1016/j.na.2008.10.060.
- Resende, C., Lemonge, A., Hallack, P., Carvalho, J. P. and Motta, J. (2020), "Global stability and natural frequencies of vibration in multi-objective op-timization of 3D steel frames", Proceedings of the XLI Ibero-Latin-American Congress on Computational Methods in Engineering, Foz do Iguacu, Brazil, November.
- Richardson, J.N., Nordenson, G., Laberenne, R., Coelho, R.F. and Adriaenssens, S. (2013), "Flexible optimum design of a bracing system for facade design using multiobjective genetic algorithms", Auto. Constr., 32, 80-87. https://doi.org/10.1016/j.autcon.2012.12.018.
- Shen, W., Ohsaki, M. and Yamakawa, M. (2021), "Robust geometry and topology optimization of plane frames using order statistics and force density method with global stability constraint", Int. J. Numer. Methods Eng., 122(14), 3653-3677. https://doi.org/10.1002/nme.6676.
- Storn, R. and Price, K. (1995), "Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces", tr-95-012, University of California, Berkeley, CA, U.S.A.
- Tejani, G.G., Savsani, V.J., Patel, V.K. and Bureerat, S. (2017), "Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization", Adv. Comput. Des., 2(4), 313-331. https://doi.org/10.12989/acd.2017.2.4.313.
- Tomei, V., Grande, E. and Imbimbo, M. (2022), "Design optimization of gridshells equipped with pretensioned rods", J. Build. Eng., 52, 104407. https://doi.org/10.1016/j.jobe.2022.104407.
- Tu, X., He, Z. and Huang, G. (2020), "Performance-based multi-objective collaborative optimization of steel frames with fuse-oriented buckling-restrained braces", Struct. Multidiscipl. Opt., 61(1), 365-379. https://doi.org/10.1007/s00158-019-02366-9.
- Wansasueb, K., Pholdee, N., Panagant, N. and Bureerat, S. (2022), "Multiobjective meta-heuristic with iterative parameter distribution estimation for aeroelastic design of an aircraft wing", Eng. Comput., 38, 695-713. https://doi.org/10.1007/s00366-020-01077-w.
- Yazdi H.M., Sulong, N. and Mosalman, F. (2010), "Fuzzy multi-objective genetic algorithm in determination of optimum mid connection location of off-centre bracing system", Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering, Chengdu, China, August.
- Zitzler, E. and Thiele, L. (1999), "Multiobjective evolutionary algorithms: a comparative case study and the strengthpareto approach", IEEE T Evolution. Comput., 3(4), 257-271. https://doi.org/10.1007/BFb0056872.