DOI QR코드

DOI QR Code

Discretized solenoid design of a 1.5 T and a 3.0 T REBCO whole-body MRI magnets with cost comparison according to magnetic flux

  • Wonju Jung (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Geonyoung Kim (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Kibum Choi (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Hyunsoo Park (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Seungyong Hahn (Department of Electrical and Computer Engineering, Seoul National University)
  • Received : 2023.11.23
  • Accepted : 2023.12.29
  • Published : 2023.12.31

Abstract

Rare earth barium copper oxide (REBCO) materials have shown the possibility of high-temperature superconductor (HTS) magnetic resonance imaging (MRI) magnets due to their elevated transition temperature. While numerous MRI magnet designs have emerged, there is a growing emphasis on estimating the cost before manufacturing. In this paper, we propose two designs of REBCO whole-body MRI magnets: (1) 1.5 T and (2) 3.0 T, the standard center field choices for hospital use, and compare their costs based on conductor usage. The basis topology of the design method is based on discretized solenoids to enhance field homogeneity. Magnetic stress calculation is done to further prove the mechanical feasibility of their construction. Multi-width winding technique and outer notch structure are used to improve critical current characteristic. We apply consistent constraints for current margins, sizes, and field homogeneities to ensure an equal cost comparison. A graph is plotted to show the cost increase with magnetic flux growth. Additionally, we compare our designs to two additional MRI magnet designs from other publications with respect to the cost and magnetic flux, and present the linear relationship between them.

Keywords

Acknowledgement

This work was supported in part by National R&D Program through the National Research Foundation of Korea(NRF) funded by Ministry of Science and ICT(2022M3I9A1072846), by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: RS-2020-KD000063), and by the Applied Superconductivity Center, Electric Power Research Institute of Seoul National University.

References

  1. J. Bednorz and K. Muller, "Possible high Tc superconductivity in the Ba-La-Cu-O system," Z. Phys. B., vol. 64, no. 2, pp. 189-193, 1986. https://doi.org/10.1007/BF01303701
  2. M. Wu, J. Ashburn, C. Torng, P. Hor, R. Meng, L. Gao, Z. Huang, Y. Wang, and C. Chu, "Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure," Phys. Rev. Lett., vol. 58, no. 9, pp. 908-910, 1987. https://doi.org/10.1103/PhysRevLett.58.908
  3. A. Schilling, M. Cantoni, J. Guo, and H. Ott, "Superconductivity above 130 k in the hg-ba-ca-cu-o system," Nature, vol. 363, no. 6424, pp. 56-58, 1993. https://doi.org/10.1038/363056a0
  4. T. Baig, Z. Yao, D. Doll, M. Tomsic, and M. Martens, "Conduction cooled magnet design for 1.5 T, 3.0 T and 7.0 T MRI systems," Supercond. Sci. Technol., vol. 27, no. 12, pp. 125012, 2014.
  5. M. Parizh, Y. Lvovsky, and M. Sumption, "Conductors for commercial MRI magnets beyond NbTi: requirements and challenges," Supercond. Sci. Technol., vol. 30, no. 1, pp. 014007, 2016.
  6. A. Malozemoff, W. Carter, S. Fleshler, L. Fritzemeier, Q. Li, L. Masur, P. Miles, D. Parker, R. Parrella, E. Podtburg, G. Riley, M. Rupich, J. Scudiere, and W. Zhang, "HTS wire at commercial performance levels," IEEE Trans. Appl. Supercond., vol. 9, no. 2, pp. 2469-2473, 1999. https://doi.org/10.1109/77.784978
  7. A. Malozemoff, D. Verebelyi, S. Fleshler, D. Aized, and D. Yu, "HTS Wire: status and prospects," Phys. C: Supercond., vol. 386, pp. 424-430, 2003. https://doi.org/10.1016/S0921-4534(02)02201-3
  8. V. Matias and R. Hammond, "HTS superconductor wire: $5/kAm $5/kAm by 2030," International Workshop on Coated Conductors for Applications, 2014.
  9. H. Miura, T. Matsuda, K. Nomura, T. Inoue, Y. Morita, R. Eguchi, S. Otake, H. Tanabe, S. Yokoyama, and S. Sato, "Development of a Half-Size 3 T REBCO Superconducting Magnet for MRI," J. Phys. Conf. Ser., vol. 1559, no. 1, pp. 012125, 2020.
  10. B. Parkinson, R. Slade, M. Mallett, and V. Chamritski, "Development of a cryogen free 1.5 T YBCO HTS magnet for MRI," IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 4400405, 2012.
  11. R. Slade, B. Parkinson, and R. Walsh, "Test results for a 1.5 T MRI system utilizing a cryogen-free YBCO magnet," IEEE Trans. Appl. Supercond., vol. 24, no. 3, pp. 4400705, 2013.
  12. D. Gogola, P. Szomolanyi, M. Skratek, and I. Frollo, "Design and construction of novel instrumentation for low-field MR tomography," Meas. Sci. Rev., vol. 18, no. 3, pp. 107, 2018.
  13. K. Tsuchiya, A. Kikuchi, A. Terashima, K. Norimoto, M. Uchida, M. Tawada, M. Masuzawa, N. Ohuchi, X. Wang, T. Takao, and S. Fujita, "Critical current measurement of commercial REBCO conductors at 4.2 K," Cryogenics, vol. 85, pp. 1-7, 2017. https://doi.org/10.1016/j.cryogenics.2017.05.002
  14. T. Cosmus and M. Parizh, "Advances in whole-body MRI magnets," IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 2104-2109, 2010.
  15. L. Wald, P. McDaniel, T. Witzel, J. Stockmann, and C. Cooley, "Low-cost and portable MRI," J. Magn. Reson. Imaging, vol. 52, no. 3, pp. 686-696, 2020. https://doi.org/10.1002/jmri.26942
  16. S. Hahn, Y. Kim, D. Park, K. Kim, J. Voccio, J. Bascunan, and Y. Iwasa, "No-insulation multi-width winding technique for high temperature superconducting magnet," Appl. Phys. Lett., vol. 103, no. 17, pp. 173511, 2013.
  17. L. Hanson, L. Sperling, G. Gard, S. Ipsen, and C. Vergara, "Swedish anthropometrics for product and workplace design," Appl. Ergon., vol. 40, no. 4, pp. 797-806, 2009. https://doi.org/10.1016/j.apergo.2008.08.007
  18. G. Morrow, "Progress in MRI magnets," IEEE Trans. Appl. Supercond., vol. 10, no. 1, pp. 744-751, 2000. https://doi.org/10.1109/77.828339
  19. M. McDowell, C. Fryar, and C. Ogden, "Anthropometric reference data for children and adults: United States, 1988-1994," Vital Health Stat., vol. 11, no. 249, pp. 1-68, 2009.
  20. M. Blasche and D. Fischer, "Magnet homogeneity and shimming," Siemens Healthineers, 2017.
  21. Mito Toshiyuki, "Development of 1 MJ conduction-cooled LTS pulse coil for UPS-SMES," IEEE Trans. Appl. Supercond., vol. 17, vol. 2, pp. 1973-1976, 2007. https://doi.org/10.1109/TASC.2007.898081
  22. H. Shin and Z. Bautista, "Establishing a test procedure for evaluating the electromechanical properties of practical REBCO coated conductor tapes by the uniaxial tension test at 77 K," Supercond. Sci. Technol., vol. 32, no. 6, pp. 064004, 2019.
  23. P. Gao, J. Mao, J. Chen, X. Wang, and Y. Zhou, "Electromechanical degradation of REBCO coated conductor tapes under combined tension and torsion loading," Int. J. Mech. Sci., vol. 223, pp. 107314, 2022.
  24. H. Shin and Z. Bautista, "Evaluation of irreversible strain/stress limits for Ic degradation in practical REBCO CC tapes under uniaxial tension," IEEE Trans. Appl. Supercond., vol. 28, no. 4, pp. 8400305, 2017.
  25. K. Kim, K. Bhattarai, K. Kim, H. Bai, I. Dixon, T. Painter, U. Bong, D. Larbalestier, and S. Hahn, "Design and performance estimation of a 20 T 46 mm no-insulation all-REBCO user magnet," IEEE Trans. Appl. Supercond. vol. 30, no. 4, pp. 4602205, 2020.
  26. Y. Iwasa, Case studies in superconducting magnets: design and operational issues, 2nd ed., Springer science & business media, pp. 98-99, 2009.
  27. W. Jang, G. Kim, K. Choi, J. Park, J. Bang, and S. Hahn, "Electromagnetic design study of a 7 T 320 mm high-temperature superconducting MRI magnet with multi-width technique incorporated," Prog. Supercond. Cryog., vol. 23, no. 4, pp. 30-34, 2021.
  28. K. Choi, J. Bang, C. Lee, J. Kim, B. Eom, S. Kim, G. Kim, C. Im, J. Kim, H. Noh, Y. Hwang, M. Sohn, M. Ahn, S. Kim, H. Lee, K. Sim, and S. Hahn, "Design of a cryogen-free 6 T 320 mm all-REBCO MRI magnet," International Conference on Magnet Technology, 2021.
  29. SuNAM, 2023.
  30. SuperOx, 2023.