DOI QR코드

DOI QR Code

Synthesis and characterization of Pb10-xCux(PO4)6O polycrystalline samples

  • Huiwon Kim (Department of Physics, Pusan National University) ;
  • Minsik Kong (Department of Physics, Pusan National University) ;
  • Minjae Kim (Department of Physics, Pusan National University) ;
  • Seohee Kim (Department of Physics, Pusan National University) ;
  • Jong Mok Ok (Department of Physics, Pusan National University)
  • 투고 : 2023.12.18
  • 심사 : 2023.12.29
  • 발행 : 2023.12.31

초록

본 연구에서는 PCPO 물질에서 보고된 초전도성을 실험적으로 확인하기 위하여 arXiv 원논문에서 보고된 시료 제조 방법을 이용하여 PCPO 시료를 합성하였다. X선 회절 분석을 통해 PCPO상이 성공적으로 합성됨을 확인하였으나, 많은 불순물상이 함께 형성되는 것 역시 관측하였다. 전기저항 측정을 통해 360~380 K 및 ~160 K 온도 근처에서 저항 변화를 관측하였으며, 이는 합성과정에서 형성된 불순물 상과 밀접한 관련이 있는 것으로 추측된다. 이러한 실험 결과는 고순도의 PCPO 시료 제조의 필요성을 시사하고 있어, 화학 양론적으로 정확한 화학 반응을 통해 불순물 형성을 최소화할 수 있는 전구체를 활용한 합성을 추가적으로 진행하였다. 하지만 활용된 전구체의 높은 안정성과 고온에서의 강한 휘발성으로 인하여 PCPO상 합성이 효과적으로 이뤄지지는 않았다. PCPO상의 물성을 정확히 측정하고 이해하기 위해서는 고순도의 PCPO시료 제작이 필요하며, 이를 위해서는 반응성을 높이면서 불순물 생성을 최소화할 수 있는 적절한 전구체 개발이 필요할 것으로 판단된다.

Lee, Kim, et al. reported in July 2023 that a modified lead apatite material, Pb10-xCux(PO4)6O (0.9 < x < 1.1), exhibited superconductivity at room temperature and atmospheric pressure [1, 2]. However, their X-ray diffraction data clearly showed the presence of impurity phases, including Cu2S, raising uncertainty about the sample quality. Subsequent studies have been conducted; however, different samples exhibited various physical properties. To verify the recipe for the sample growth process, we synthesized samples following the methodology outlined in the reference [1, 2]. An analysis of the structure and physical properties of the synthesized sample reaffirms the critical importance of high-quality sample growth.

키워드

과제정보

This research was supported by BrainLink program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(2022H1D3A3A01077468) and Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education(2021R1A6C101A429).

참고문헌

  1. S. Lee, J. H. Kim, and Y. W. Kwon, "The First Room-Temperature Ambient-Pressure Superconductor," arXiv:2307.12008.
  2. S. Lee, J. Kim, H. T. Kim, S. Im, S. An, and K. H. Auh, "Superconductor Pb10-xCux(PO4)6O showing levitation at room temperature and atmospheric pressure and mechanism," arXiv:2307.12037.
  3. H. K. Onnes, "Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures" in Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853-1926, K. Gavroglu and Y. Goudaroulis, Dordrecht: Springer Netherlands, 1991, pp. 261-263
  4. Z. Lei, C. W. Lin, I. N. Chen, C. T. Chou, and L. M. Wang, "The characteristics of LK-99 by Cu2S removal using ammonia solution: A diamagnetic semiconductor," arXiv:2309.17445.
  5. K. Guo, Y. Li, and S. Jia, "Ferromagnetic half levitation of LK-99-like synthetic samples," SCI CHINA PHYS MECH, vol. 66, pp. 107411, 2023.
  6. H. Wu, L. Yang, J. Yu, G. Zhang, B. Xiao, and H. Chang, "Observation of abnormal resistance-temperature behavior along with diamagnetic transition in Pb10-xCux(PO4)6O-based composite," arXiv:2308.05001.
  7. S. Zhu, W. Wu, Z. Li, and J. Luo, "First-order transition in LK-99 containing Cu2S," Matter, vol. 6, pp. 4401-4407, 2023 https://doi.org/10.1016/j.matt.2023.11.001
  8. I. Timokhin, C. Chen, Q. Yang, and A. Mishchenko, "Synthesis and characterisation of LK-99," arXiv:2308.03823.
  9. P. Puphal, M. Y. P. Akbar, M. Hepting, E. Goering, M. Isobe, A. A. Nugroho, and B. Keimer, "Single crystal synthesis, structure, and magnetism of Pb10-xCux(PO4)6O," APL Mater., vol. 11, pp. 101128, 2023.
  10. P. Wang, X. Liu, J. Ge, C. Ji, H. Ji, Y. Liu, Y. Ai, G. Ma, S. Qi, and J. Wang, "Ferromagnetic and insulating behavior in both half magnetic levitation and non-levitation LK-99 like samples," Quantum Front, vol. 2, pp. 1-7, 2023. https://doi.org/10.1007/s44214-023-00035-z
  11. H. Singh, A. Gautam, M. Singh, P. Saha, P. Kumar, P. Das, M. Lamba, K. Yadav, P. K. Mishra, S. Patnaik, and A. Ganguli, "On the experimental evidence for possible superconductivity in LK99," arXiv:2308.06589.
  12. K. Kumar, N. K. Karn, and V. P. S. Awana, "Synthesis of possible room temperature superconductor LK-99: Pb9Cu(PO4)6O," Supercond Sci Technol, vol. 36, pp. 10LT02, 2023.
  13. Q. Hou, W. Wei, X. Zhou, Y. Sun, and Z. Shi, "Observation of zero resistance above 100 K in Pb10-xCux(PO4)6O," arXiv:2308.01192.
  14. P. K. Jain, "Superionic Phase Transition of Copper (I) Sulfide and Its Implication for Purported Superconductivity of LK-99," J. Phys. Chem. C, vol. 127, pp. 18253-18255, 2023. https://doi.org/10.1021/acs.jpcc.3c05684
  15. L. H. Brixner, P. E. Bierstedt, W. F. Jaep, and J. R. Barkley, "αPb3(PO4)2 - A pure ferroelastic," Mater. Res. Bull., vol. 8, pp. 497-503, 1973. https://doi.org/10.1016/0025-5408(73)90125-6
  16. J. Lai, J. Li, P. Liu, Y. Sun, and X. Q. Chen, "First-principles study on the electronic structure of Pb10-xCux(PO4)6O (x = 0, 1)," J Mater Sci Technol, vol. 171, pp. 66-70, 2024. https://doi.org/10.1016/j.jmst.2023.08.001
  17. S. Yang, G. Liu, and Y. Zhong, "Ab initio investigations on the electronic properties and stability of Cu-substituted lead apatite (LK-99) family with different doping concentrations (x= 0, 1, 2)," Mater. Today Commun., vol. 37, pp. 107379, 2023.
  18. R. Kurleto, S. Lany, D. Pashov, S. Acharya, M. van Schilfgaarde, and D. S. Dessau, "Pb-apatite framework as a generator of novel flat-band CuO based physics, including possible room temperature superconductivity," arXiv:2308.00698.
  19. O. Tavakol and T. Scaffidi, "Minimal model for the flat bands in copper-substituted lead phosphate apatite," arXiv:2308.01315.
  20. J. Zhao, H. Zhao, and Z. Zhu, "Influence of sintering conditions and CuO loss on dielectric properties of CaCu3Ti4O12 ceramics," Mater. Res. Bull., vol. 113, pp. 97-101, 2019. https://doi.org/10.1016/j.materresbull.2019.01.014
  21. The Open Quantum Materials Database, https://oqmd.org/materials/ (accessed: December 2023)