DOI QR코드

DOI QR Code

광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration

  • 장인동 (한국건설기술연구원 구조연구본부) ;
  • 이남곤 (한국건설기술연구원 구조연구본부) ;
  • 박정준 (한국건설기술연구원 구조연구본부) ;
  • 곽종원 (한국건설기술연구원 구조연구본부) ;
  • 문훈 (한국건설기술연구원 구조연구본부)
  • Indong Jang (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Namkon Lee (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jung-Jun Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jong-Won Kwark (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Hoon Moon (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2023.11.03
  • 심사 : 2023.11.21
  • 발행 : 2023.12.30

초록

콘크리트는 전 생애주기에서 막대한 양의 이산화탄소를 배출하며, 이산화탄소 감축을 위한 사회적인 요구에 따라 콘크리트에 이산화탄소를 광물형태로 저장하려는 연구가 지속되고 있다. 본 연구에서는 광합성을 통해 이산화탄소를 흡수하여 탄산칼슘으로 고정하는 남세균(Cyanobacteria)을 다공성 콘크리트 기질에 도포하였으며, 이의 특수 환경 양생에 따른 콘크리트 기질의 특성 변화를 분석하였다. 실험 결과 미생물에 의한 탄산칼슘 석출은 빛이 닿는 표면부에서 집중되어 있는 것을 확인하였으며, 대부분의 석출이 골재가 아닌 페이스트 부분에서 발생하였다. 이러한 미생물에 의한 탄산칼슘 석출은 페이스트의 역학성능을 강화하였으며, 양생 재령의 경과에 따라 전체 압축강도가 향상되는 효과를 보였다. 또한 미생물 막과 탄산칼슘의 증가로 공극구조가 개선되어 투수량 감소에도 영향을 끼쳤다.

Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.

키워드

과제정보

이 연구는 한국건설기술연구원 주요사업 「친환경 Carbon Eating Concrete(CEC) 제조 및 활용 기술 개발」의 연구비 지원에 의해 수행되었습니다(No. 2023-0108).

참고문헌

  1. Abed, R.M., Dobretsov, S., Sudesh, K. (2009). Applications of cyanobacteria in biotechnology, Journal of Applied Microbiology, 106(1), 1-12. https://doi.org/10.1111/j.1365-2672.2008.03918.x
  2. Alshalif, A.F., Irwan, J.M., Othman, N., Al-Gheethi, A.A., Shamsudin, S., Nasser, I.M. (2021). Optimisation of carbon dioxide sequestration into bio-foamed concrete bricks pores using Bacillus tequilensis, Journal of CO2 Utilization, 44, 101412.
  3. Bao, H., Xu, G., Yu, M., Wang, Q., Li, R., Saafi, M., Ye, J. (2022). Evolution of ITZ and its effect on the carbonation depth of concrete under supercritical CO2 condition, Cement and Concrete Composites, 126, 104336.
  4. Claisse, P.A., El-Sayad, H., Shaaban, I.G. (1999). Permeability and pore volume of carbonated concrete, ACI Materials Journal, 96(3), 378-381. https://doi.org/10.14359/636
  5. Duan, P., Chen, W., Ma, J., Shui, Z. (2013). Influence of layered double hydroxides on microstructure and carbonation resistance of sulphoaluminate cement concrete, Construction and Building Materials, 48, 601-609. https://doi.org/10.1016/j.conbuildmat.2013.07.049
  6. Ekolu, S.O. (2016). A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete, Construction and Building Materials, 127, 306-320. https://doi.org/10.1016/j.conbuildmat.2016.09.056
  7. Faisal Alshalif, A., Irwan, J.M., Othman, N., Zamer, M.M., Anneza, L.H. (2017). Carbon dioxide(CO2) sequestration in bio-concrete, an overview, MATEC Web of Conferences, 103, 05016.
  8. He, P., Shi, C., Tu, Z., Poon, C.S., Zhang, J. (2016). Effect of further water curing on compressive strength and microstructure of CO2-cured concrete, Cement and Concrete Composites, 72, 80-88. https://doi.org/10.1016/j.cemconcomp.2016.05.026
  9. Heveran, C.M., Williams, S.L., Qiu, J., Artier, J., Hubler, M.H., Cook, S.M., Cameron, J.C., Srubar, W.V. (2020). Biomineralization and successive regeneration of engineered living building materials. Matter, 2(2), 481-494. https://doi.org/10.1016/j.matt.2019.11.016
  10. Huang, L., Krigsvoll, G., Johansen, F., Liu, Y., Zhang, X. (2018). Carbon emission of global construction sector, Renewable and Sustainable Energy Reviews, 81, 1906-1916. https://doi.org/10.1016/j.rser.2017.06.001
  11. Jang, I., Park, J., Son, Y., Min, J., Park, W., Yi, C. (2023). Photosynthetic living building material: effect of the initial population of cyanobacteria on fixation of CO2 and mechanical properties, Construction and Building Materials, 396, 132218.
  12. Kaddah, F., Ranaivomanana, H., Amiri, O., Roziere, E. (2022). Accelerated carbonation of recycled concrete aggregates: investigation on the microstructure and transport properties at cement paste and mortar scales, Journal of CO2 Utilization, 57, 101885.
  13. Kaur, G., Dhami, N.K., Goyal, S., Mukherjee, A., Reddy, M.S. (2016). Utilization of carbon dioxide as an alternative to urea in biocementation, Construction and Building Materials, 123, 527-533. https://doi.org/10.1016/j.conbuildmat.2016.07.036
  14. Li, Y., Mi, T., Ding, X., Liu, W., Dong, B., Dong, Z., Tang, L., Xing, F. (2022). Assessment of compositional changes of carbonated cement pastes subjected to high temperatures using in-situ raman mapping and XPS, Journal of Building Engineering, 45, 103454.
  15. Mehta, P.K., Monteiro, P.J. (2014). Concrete: Microstructure, Properties, and Materials, McGraw-Hill Education.
  16. Monkman, S., MacDonald, M. (2016). Carbon dioxide upcycling into industrially produced concrete blocks, Construction and Building Materials, 124, 127-132. https://doi.org/10.1016/j.conbuildmat.2016.07.046
  17. Pan, X., Shi, C., Farzadnia, N., Hu, X., Zheng, J. (2019). Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing, Cement and Concrete Composites, 99, 89-99. https://doi.org/10.1016/j.cemconcomp.2019.03.006
  18. Qiu, J., Artier, J., Cook, S., Srubar, W.V., Cameron, J.C., Hubler, M.H. (2021). Engineering living building materials for enhanced bacterial viability and mechanical properties, IScience, 24(2).
  19. Shimura, Y., Hirose, Y., Misawa, N., Osana, Y., Katoh, H., Yamaguchi, H., Kawachi, M. (2015). Comparison of the terrestrial cyanobacterium leptolyngbya sp. NIES-2104 and the freshwater Leptolyngbya boryana PCC 6306 genomes, DNA Research, 22(6), 403-412. https://doi.org/10.1093/dnares/dsv022
  20. Suescum-Morales, D., Fernandez, D.C., Fernandez, J.M., Jimenez, J.R. (2021). The combined effect of CO2 and calcined hydrotalcite on one-coat limestone mortar properties, Construction and Building Materials, 280, 122532.
  21. Suescum-Morales, D., Fernandez-Rodriguez, J.M., Jimenez, J.R. (2022). Use of carbonated water to improve the mechanical properties and reduce the carbon footprint of cement-based materials with recycled aggregates, Journal of CO2 Utilization, 57, 101886.
  22. Tu, Y., Yu, H., Ma, H., Han, W., Diao, Y. (2022). Experimental study of the relationship between bond strength of aggerates interface and microhardness of ITZ in concrete, Construction and Building Materials, 352, 128990.
  23. Vaara, T., Vaara, M., Niemela, S. (1979). Two improved methods for obtaining axenic cultures of cyanobacteria, Applied and Environmental Microbiology, 38(5), 1011-1014. https://doi.org/10.1128/aem.38.5.1011-1014.1979
  24. Villain, G., Thiery, M., Platret, G. (2007). Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry, Cement and Concrete Research, 37(8), 1182-1192. https://doi.org/10.1016/j.cemconres.2007.04.015
  25. Woodall, C.M., McQueen, N., Pilorge, H., Wilcox, J. (2019). Utilization of mineral carbonation products: current state and potential, Greenhouse Gases: Science and Technology, 9(6), 1096-1113. https://doi.org/10.1002/ghg.1940
  26. Xuan, D., Zhan, B., Poon, C.S. (2016). Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates, Cement and Concrete Composites, 65, 67-74. https://doi.org/10.1016/j.cemconcomp.2015.10.018