DOI QR코드

DOI QR Code

An Investigation on Recycling of Prestressed Concrete Sleepers

프리스트레스트 콘크리트 침목의 재활용 기술에 대한 고찰과 기초 실험

  • Jae-Young Lee (Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI)) ;
  • Uijun Lee (School of Civil and Environmental Engineering, Hankyong National University) ;
  • Jaewon Lee (School of Civil and Environmental Engineering, Hankyong National University) ;
  • Sunmo Yang (School of Civil and Environmental Engineering, Hankyong National University) ;
  • Seongwoo Gwon (School of Civil and Environmental Engineering & Construction Engineering Research Institute, Hankyong National University)
  • 이재영 (한국철도기술연구원 교통환경연구실) ;
  • 이의준 (한경국립대학교 건설환경공학부) ;
  • 이재원 (한경국립대학교 건설환경공학부) ;
  • 양선모 (한경국립대학교 건설환경공학부) ;
  • 권성우 (한경국립대학교 건설환경공학부)
  • Received : 2023.09.22
  • Accepted : 2023.10.05
  • Published : 2023.12.30

Abstract

The need for sustainable waste management has intensified the focus on recycling prestressed concrete sleepers used in railways. Given their high volume and environmental impact at the end of their service life, finding efficient recycling methods is crucial. This study explores current recycling approaches, particularly mechanical techniques, evaluating their advantages, limitations, and economic feasibility. Finally, an example of mechanical recycling was performed. The analysis results of the resulting recycled aggregates are suggested. Then, the non-cement concrete mixtures with recycled aggregates were designed, and their strength development was analyzed.

지속가능한 폐기물 관리의 필요성으로 인해 철도에 사용되는 프리스트레스트 콘크리트 침목의 재활용에 관한 관심이 높아졌다. 이에 따라, 사용 수명이 다한 폐콘크리트 침목의 양이 증가한다는 점과 이것이 환경에 미치는 영향을 고려할 때, 폐콘크리트 침목의 효율적인 재활용 방법을 찾는 것은 매우 중요하다. 이 연구는 현재의 재활용 방법, 특히 기계적 처리 방법을 조사하고, 이들의 이점, 한계, 그리고 경제적 실현 가능성에 대해 파악하였다. 이를 참고하여 본 연구는 기계적 재활용 처리 방법의 한 예시를 수행하여 회수된 순환 골재의 특성과 이를 포함하여 제조한 알칼리 활성화 플라이애시 콘크리트의 특성을 분석하였다. 향후 본 연구 결과물을 콘크리트 침목으로 다시 적용할 목적으로 기초적으로 연구하였다.

Keywords

Acknowledgement

본 연구는 한국철도기술연구원의 기본사업 '철도시설의 폐기물 발생 저감 및 재자원화 기술 개발(PK2302C2)'의 용역비 지원으로 수행되었습니다.

References

  1. Akbarnezhad, A., Ong, K.C.G., Zhang, M.H., Tam, C.T., Foo, T.W.J. (2011). Microwave-assisted beneficiation of recycled concrete aggregates, Construction and Building Materials, 25(8), 3469-3479. https://doi.org/10.1016/j.conbuildmat.2011.03.038
  2. Ashori, A., Tabarsa, T., Amosi, F. (2012). Evaluation of using waste timber railway sleepers in wood-cement composite materials, Construction and Building Materials, 27(1), 126-129. https://doi.org/10.1016/j.conbuildmat.2011.08.016
  3. Attri, G.K., Gupta, R.C., Shrivastava, S. (2022). Sustainable precast concrete blocks incorporating recycled concrete aggregate, stone crusher, and silica dust, Journal of Cleaner Production, 362, 132354.
  4. Blair, B.F., Hite, D. (2005). The impact of environmental regulations on the industry structure of landfills, Growth and Change, 36(4), 529-550. https://doi.org/10.1111/j.1468-2257.2005.00293.x
  5. Cabral, A.E.B., Schalch, V., Dal Molin, D.C.C., Ribeiro, J.L.D. (2010). Mechanical properties modeling of recycled aggregate concrete, Construction and Building Materials, 24(4), 421-430. https://doi.org/10.1016/j.conbuildmat.2009.10.011
  6. Carrion, F., Montalban, L., Real, J.I., Real, T. (2014). Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers, The Scientific World Journal, 2014, 526346.
  7. Cho, J., Hyun, J., Bok, J. (2005). The selsctivity of optimum surfactant for recycling of waste prestressed concrete railway bed, Magazine of Korea Society of Waste Management, 22(8), 729-735 [in Korean].
  8. Choi, G. (2007). A case of construction waste reduction and recycling in the construction field, Magazine of Korean Recycled Construction Resources Institute, 3(1), 4-9 [in Korean].
  9. Choi, H., Shin, Y., An, S., Chung, H., Kang, K. (2007). A properties and durability of recycled aggregate concrete, Journal of the Architectural Institute of Korea 23(9), 125-132 [in Korean].
  10. Collivignarelli, M.C., Cillari, G., Ricciardi, P., Miino, M.C., Torretta, V., Rada, E.C., Abba, A. (2020). The production of sustainable concrete with the use of alternative aggregates: a review, Sustainability, 12(19), 7903.
  11. de Bortoli, A., Bouhaya, L., Feraille, A. (2020). A life cycle model for high-speed rail infrastructure: environmental inventories and assessment of the Tours-Bordeaux railway in France, The International Journal of Life Cycle Assessment, 25, 814-830. https://doi.org/10.1007/s11367-019-01727-2
  12. Ding, T., Xiao, J., Tam, V.W. (2016). A closed-loop life cycle assessment of recycled aggregate concrete utilization in China, Waste Management, 56, 367-375. https://doi.org/10.1016/j.wasman.2016.05.031
  13. Gonzalez-Corominas, A., Etxeberria, M., Fernandez, I. (2017). Structural behaviour of prestressed concrete sleepers produced with high performance recycled aggregate concrete, Materials and Structures, 50, 1-14. https://doi.org/10.1617/s11527-016-0966-6
  14. Ho, H.J., Iizuka, A., Shibata, E. (2021). Chemical recycling and use of various types of concrete waste: a review, Journal of Cleaner Production, 284, 124785.
  15. Hwang, Y., Hyun, J., Cho. J. (2005). Optimum condition in the cleaning process for the recycling of waste PC railway beds as a frame of fish house, Magazine of Korea Society of Waste Management, 22(1), 9-16 [in Korean].
  16. Jain, C., Khandelwal, S., Mehrotra, S., Gupta, R. (2016). A review paper on use of composite material for railway sleepers in railway track. SSRG International Journal of Civil Engineering, 3(5), 104-108.
  17. Jeffrey, C. (2011). Construction and demolition waste recycling: a literature review, Dalhousie University's Office of Sustainability, 35.
  18. Jeon, D., Yum, W.S., Song, H., Sim, S., Oh, J.E. (2018). The temperature-dependent action of sugar in the retardation and strength improvement of Ca(OH)2-Na2CO3-activated fly ash systems through calcium complexation, Construction and Building Materials, 190, 918-928. https://doi.org/10.1016/j.conbuildmat.2018.09.164
  19. Jie, Z., Nan, C. (2020). Concrete construction waste pollution and relevant prefabricated recycling measures, Nature Environment and Pollution Technology, 19(1), 367-372.
  20. Kaewunruen, S., Remennikov, A.M. (2009). Structural safety of railway prestressed concrete sleepers, Australian Journal of Structural Engineering, 9(2), 129-140. https://doi.org/10.1080/13287982.2009.11465016
  21. Khong, S.C., Yee, J.J., Doh, S.I., Chin, S.C. (2022). A review of agro-potential waste's as constituent in railway sleepers, Physics and Chemistry of the Earth, 128, 103238.
  22. Kucera, P., Lidmila, M. (2013). Possibilities of utilization of alternative materials within railway trackbed, Proceedings of the Ninth International Conferences on the Bearing Capacity of Roads, Railways and Airfields. 2.
  23. Li, D., Kaewunruen, S. (2019). Effect of extreme climate on topology of railway prestressed concrete sleepers, Climate, 7(1), 17.
  24. Lidmila, M., Tesarek, P., Plachy, T., Racova, Z., Padevet, P., Nezerka, V., Zobal, O. (2014). Utilization of recycled fine-ground concrete from railway sleepers for production of cement-based binder, Applied Mechanics and Materials, 486, 323-326. https://doi.org/10.4028/www.scientific.net/AMM.486.323
  25. Limbachiya, M.E.A., Koulouris, A., Roberts, J.J., Fried, A.N. (2004). Performance of recycled aggregate concrete, Proceeding of RILEM International Symposium on Environment-Conscious Materials and Systems for Sustainable Development, 127-136.
  26. Manalo, A., Aravinthan, T., Karunasena, W., Ticoalu, A. (2010). A review of alternative materials for replacing existing timber sleepers, Composite Structures, 92(3), 603-611. https://doi.org/10.1016/j.compstruct.2009.08.046
  27. Mukherjee, S., Mukhopadhyay, S., Hashim, M.A., Sen Gupta, B. (2015). Contemporary environmental issues of landfill leachate: assessment and remedies. Critical reviews in environmental science and technology, 45(5), 472-590. https://doi.org/10.1080/10643389.2013.876524
  28. Naaman, A.E., Chao, S.H. (1982). Prestressed Concrete Analysis and Design: Fundamentals.
  29. Olsvik, O., Popovic, T., Skjerve, E., Cudjoe, K.S., Hornes, E., Ugelstad, J., Uhlen, M. (1994). Magnetic separation techniques in diagnostic microbiology, Clinical Microbiology Reviews, 7(1), 43-54. https://doi.org/10.1128/CMR.7.1.43-54.1994
  30. Park, J., Chun, S. (2022). Characteristics of landfill gas generation by separate landfill of construction waste and mixed landfill with household waste, New Renewable Energy, 18(4), 1-11. [in Korean] https://doi.org/10.7849/ksnre.2022.0029
  31. Prosek, Z., Trejbal, J., Nezerka, V., Golias, V., Faltus, M., Tesarek, P. (2020). Recovery of residual anhydrous clinker in finely ground recycled concrete, Resources, Conservation and Recycling, 155, 104640.
  32. Purnell, P., Velenturf, A.P.M., Marshall, R. (2019). New governance for circular economy: policy, regulation and market contexts for resource recovery from waste, Resource Recovery from Wastes, 63, 395.
  33. Ramasamy, K.A., Sadasivam, Y., Rajaram, V., Nithiyananthan, Y., Anandaraj, S., Harihanandh, M. (2021). Review on bond strength of recycled aggregates in concrete, IOP Conference Series: Materials Science and Engineering, 1145(1), 012108.
  34. Sainz-Aja, J., Carrascal, I., Polanco, J.A., Thomas, C., Sosa, I., Casado, J., Diego, S. (2019). Self-compacting recycled aggregate concrete using out-of-service railway superstructure wastes, Journal of Cleaner Production, 230, 945-955. https://doi.org/10.1016/j.jclepro.2019.04.386
  35. Sanudo, R., Goswami, R.R., Ricci, S., Miranda, M. (2022). Efficient reuse of railway track waste materials, Sustainability, 14(18), 11721.
  36. SenthilKumar, V., Jayabharath, P., Kesavan, G., Karthikeyan, V. (2018). Experimental study on replacing aggregates by concrete waste, International Research Journal of Engineering and Technology(IRJET) e-ISSN, 2395-0056.
  37. Silva, R.V., De Brito, J., Dhir, R.K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production, Construction and Building Materials, 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117
  38. Suharwanto, S., Hasyim, W., Prakasa, Y. (2021). Performance of recycled concrete made from railway sleeper: experimental study, Journal of Advanced Civil and Environmental Engineering, 4(2), 104-112. https://doi.org/10.30659/jacee.4.2.104-112
  39. Tam, V.W., Soomro, M., Evangelista, A.C.J. (2018). A review of recycled aggregate in concrete applications (2000-2017), Construction and Building materials, 172, 272-292. https://doi.org/10.1016/j.conbuildmat.2018.03.240
  40. Timber, P.T. (1999). Review of the Landfill Disposal Risks.
  41.  Tue, N.V. (1993). Zur spannungsumlagerung im spannbeton bei der rissbildung unter statischer und wiederholter belastung, Deutscher Ausschuss fur Stahlbeton, 435.
  42. Villagran-Zaccardi, Y.A., Marsh, A.T., Sosa, M.E., Zega, C.J., De Belie, N., Bernal, S.A. (2022). Complete re-utilization of waste concretes-valorisation pathways and research needs, Resources, Conservation and Recycling, 177, 105955.
  43. Yang, S., Lim, Y. (2018). Mechanical strength and drying shrinkage properties of RCA concretes produced from old railway concrete sleepers using by a modified EMV method, Construction and Building Materials, 185, 499-507. https://doi.org/10.1016/j.conbuildmat.2018.07.074
  44. Zhao, Z., Gao, Y., Li, C. (2020). Experimental study on dynamic properties of a recycled composite sleeper and its theoretical model, Symmetry, 13(1), 17.