DOI QR코드

DOI QR Code

Grid emission factors related to electricity generation and evaluation of attitudes towards the idea of carbon dioxide utilization. A Case of Kazakhstan

  • Marat Kozhikov (Department of Environmental Engineering and Management, L.N. Gumilyov Eurasian National University) ;
  • Paata Janelidze (International Expert in the Energy Sector) ;
  • Akbilek Seitmukhanbet (School of engineering and digital sciences of Nazarbayev University) ;
  • Yessekina Aiman (School of engineering and digital sciences of Nazarbayev University) ;
  • Timoth Mkilima (greenhouse gases inventory department, Zhasyl Damu JSC)
  • Received : 2023.06.08
  • Accepted : 2023.06.25
  • Published : 2023.06.25

Abstract

The first part of the study involved calculating emission factors from electricity production. The second part of the study aimed to analyze perceptions of the concept of carbon dioxide utilization and was conducted through a questionnaire survey with participants from Almaty and Astana. The results showed that there were no significant improvements in the decrease of carbon dioxide emissions between 2017 and 2020. Almost no change occurred in the rate of carbon dioxide emission throughout the course of the four years. According to the results of the survey, a number of respondents had reservations about the feasibility of using carbon dioxide utilization as a solution to tackle climate change. They felt that this technology would only offer a temporary solution to carbon emissions, without addressing the underlying causes of the problem. Despite these concerns, the participants acknowledged that carbon dioxide utilization had certain advantages in promoting sustainability.

Keywords

References

  1. Akhanova, G., Nadeem, A., Kim, J.R. and Azhar, S.(2020), "A multi-criteria decision-making framework for building sustainability assessment in Kazakhstan", Sustain. Citie Soc., 52, 101842. https://doi.org/10.1016/j.scs.2019.101842.
  2. Aliyarov, B.K. and Zhurinov, M.Z. (2020), "Features and ways of decarbonization economy of Kazakhstan", NEWS of National Academy of Sciences of the Republic of Kazakhstan, 6(444), 29-32. https://doi.org/10.32014/2020.2518-170X.127.
  3. Askarova, A., Safarik, P., Nugymanova, A., Bolegenova, S., Maximov, V. and Bolegenova, S. (2020), "Minimization of toxic emissions during burning low-grade fuel at Kazakhstan thermal power plant", Acta Polytechnica, 60(3), 206-213. https://doi.org/10.14311/AP.2020.60.0206.
  4. Baldocchi, D. and Penuelas, J. (2019), "The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems", Global Change Biol., 25(4), 1191-197. https://doi.org/10.1111/gcb.14559.
  5. CDM - Executive Board. (2009), "Methodological tool to calculate the emission factor for an electricity System". Unfccc/Ccnucc.
  6. Chen, H., Letmathe, P. and Soderstrom, N. (2021), "Reporting bias and monitoring in clean development mechanism projects", Contemp. Account. Res., 38(1), 7-31. https://doi.org/10.1111/1911-3846.12609.
  7. Colett, J.S., Kelly, J.C. and Keoleian, G.A. (2016), "Using nested average electricity allocation protocols to characterize electrical grids in life cycle assessment", J. Ind. Ecology, https://doi.org/10.1111/jiec.12268.
  8. Dunne, J.A., Jackson, S.C. and Harte, J. (2013), "Greenhouse effect", 18-32 in Encyclopedia of Biodiversity.
  9. Eldardiry, H. and Habib, E. (2018), "Carbon capture and sequestration in power generation: Review of impacts and opportunities for water sustainability", Energ. Sustain. Soc., 8(1), 6. https://doi.org/10.1186/s13705-018-0146-3.
  10. Fernandes, E.A. and Leite, G.B. (2021), "Atuacao dos projetos de mecanismo de desenvolvimento limpo para o desenvolvimento sustentavel no Brasil", Braz. J. Political Economy, 41(2), 351-371. https://doi.org/10.1590/0101-31572021-3168.
  11. Grunewald, N. and Martinez-Zarzoso, I. (2016), "Did the Kyoto protocol fail? An evaluation of the effect of the Kyoto protocol on CO 2 emissions", Environ. Development Economics, 21(1), 1-22. https://doi.org/10.1017/S1355770X15000091.
  12. Hwang, J., Maharjan, K. and Cho, H.J. (2023), "A review of hydrogen utilization in power generation and transportation sectors: Achievements and future challenges", Int. J. Hydrogen Energ., 48(74), 28629-28648. https://doi.org/10.1016/j.ijhydene.2023.04.024.
  13. Jones, C.R., Olfe-Krautlein, B. and Kaklamanou, D. (2017), "Lay perceptions of Carbon Dioxide Utilisation technologies in the United Kingdom and Germany: An exploratory qualitative interview study", Energ. Res. Social Sci., 34, 283-293. https://doi.org/10.1016/j.erss.2017.09.011.
  14. Keiyinci, S. and Aydin, K. (2021), "Progress in carbon emission reduction technology in fossil fuel-based hydrogen production", Adv. Environ. Res., 10(2),147-163. https://doi.org/10.12989/aer.2021.10.2.147.
  15. Kerimray, A. and Bakdolotov, A. (2017), Sustainable Energy in Kazakhstan. (Y. Kalyuzhnova and R. Pomfret), Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2017. Series: Central Asia research forum: Routledge.
  16. Kim, H., Tae, S. and Yang, J. (2020), "Calculation methods of emission factors and emissions of fugitive particulate matter in South Korean construction sites", Sustainability 12(23), 9802. https://doi.org/10.3390/su12239802.
  17. Koch, N. and Tynkkynen, V.P. (2021), "The geopolitics of renewables in Kazakhstan and Russia", Geopolitics, 26(2), 521-540. https://doi.org/10.1080/14650045.2019.1583214.
  18. Kozhikov, M. and Kapsalyamov, B. (2022), "Greenhouse gas trading scheme in the Republic of Kazakhstan - seven years from its creation, problems and solutions", J. Environ. Management Tourism, 5(61), 1321-1338. https://doi.org/10.14505/jemt.v13.5(61).10.
  19. Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., Quachie, A. and Adormaa, B. (2018), "Greenhouse effect: Greenhouse gases and their impact on global warming", J. Scientific Res. Reports. https://doi.org/10.9734/jsrr/2017/39630.
  20. Larsen, R.D. (1985), "Box-and-whisker plots", J. Chem. Education, 62(4), 302. https://doi.org/10.1021/ed062p302.
  21. Lee, K.M. and Lee, M.H. (2021), "Uncertainty of the electricity emission factor incorporating the uncertainty of the fuel emission factors", Energies, 14(18), 5697. https://doi.org/10.3390/en14185697.
  22. Li, S., Siu, Y.W. and Zhao, G. (2021), "Driving factors of CO2 emissions: Further study based on machine learning", Front. Environ. Sci., 9. https://doi.org/10.3389/fenvs.2021.721517.
  23. Liu, X., Wang, X., Licht, G. and Licht, S. (2020), "Transformation of the greenhouse gas carbon dioxide to graphene", J. CO2 Utilization, 36, 288-294. https://doi.org/10.1016/j.jcou.2019.11.019.
  24. Majumdar, K.K., Arora, S. and Pahuja, S. (2021), "Climate change mitigation information disclosure of oil & gas sector in India: A perception analysis", Adv. Environ. Res., 10(2), 165-181. https://doi.org/10.12989/aer.2021.10.2.165.
  25. Manabe, S. (2019), "Role of greenhouse gas in climate change", Tellus, Series A: Dynamic Meteorology and Oceanography.
  26. Meiramkulova, K., Devrishov, D., Kakabayev, A., Marzanov, N., Kurmanbayeva, A., Adilbektegi, G., Marzanova, S., Kydyrbekova, A. and Mkilima, T. (2022), "Investigating the influence of fly attractant on food waste recovery through fly larvae production", Sustainability, 14(17), 10494. https://doi.org/10.3390/su141710494.
  27. Meiramkulova, K., Orynbekov, J.D., Tashenov, E., Kydyrbekova, A., Mkilima, T. and Inglezakis, V.J. (2020), "Evaluation of electrochemical methods for poultry slaughterhouse wastewater treatment", Sustainability, 12(12), 5110. https://doi.org/10.3390/su12125110.
  28. Meiramkulova, K., Mkilima, T., Baituk, G., Beisembayeva, K., Meirbekov, A., Kakabayev, A., Adilbektegi, G., Tleukulov, A. and Tazhkenova, G. (2022), "Treatment of waste stabilization pond effluent using natural zeolite for irrigation potential", (Ed., A. Bhatnagar), Plos ONE, 17(6), e0259614. https://doi.org/10.1371/journal.pone.0259614.
  29. Meiramkulova, K., Orynbekov, D., Saspugayeva, G., Aubakirova, K., Arystanova, S., Kydyrbekova, A., Tashenov, E., Nurlan, K. and Mkilima, T. (2020), "The effect of mixing ratios on the performance of an integrated poultry slaughterhouse wastewater treatment plant for a recyclable high-quality effluent", Sustainability, 12(15), 6097. https://doi.org/10.3390/su12156097.
  30. Mikhaylov, A., Moiseev, N., Aleshin, K and Burkhardt, T. (2020), "Global climate change and greenhouse effect", Entrepreneurship Sustain. Issues, 7(4), 2897-2913. https://doi.org/10.9770/jesi.2020.7.4(21).
  31. Mkilima, T. (2022), "Treatment of livestock slaughterhouse wastewater by the electrochemical method using stainless steel and copper electrodes", Environ. Quality Management, https://doi.org/10.1002/tqem.21858.
  32. Mkilima, T., Bazarbayeva, T., Assel, K., Nurkenovna, N.N., Bolatovna, O.I., Sultanseitovna, K.A., Saule, M. and Samal, S. (2022), "Pore size in the removal of phosphorus and nitrogen from poultry slaughterhouse wastewater using polymeric nanofiltration membranes", Water, 14(18), 2929. https://doi.org/10.3390/w14182929.
  33. Mkilima, T., Meiramkulova, K., Nurbala, U., Zandybay, A., Khusainov, M., Nurmukhanbetova, N., Tastanova, L., Mashan, T. and Meirbekov, A. (2021), "Investigating the influence of column depth on the treatment of textile wastewater using natural zeolite", Molecules, 26(22), 7030. https://doi.org/10.3390/molecules26227030.
  34. Monacrovich, E., Pilifosova, O., Danchuk, D., Papafanasopulo, G. and Inozemtseva, N. (1996), "Estimating the potential of greenhouse gas mitigation in Kazakhstan", Environ. Management, 20(1), 57-64. https://doi.org/10.1007/BF01204193.
  35. Mouraviev, N. (2021), "Renewable energy in Kazakhstan: Challenges to policy and governance", Energ. Policy, 149, 112051. https://doi.org/10.1016/j.enpol.2020.112051.
  36. Olczak, P., Zelazna, A., Matuszewska, D. and Olek, M. (2021), "The 'My Electricity' program as one of the ways to reduce CO2 emissions in Poland", Energies, 14(22), 7679. https://doi.org/10.3390/en14227679.
  37. Phillips, J., Das, K. and Newell, P. (2013), "Governance and technology transfer in the clean development mechanism in India", Global Environ. Change, 23(6), 1594-1604. https://doi.org/10.1016/j.gloenvcha.2013.09.012.
  38. Qi, L., Liu, L., Jiang, L., Wang, Z. and Zhao, W. (2020), "Optimal operation strategies under a carbon cap-and-trade mechanism: A capital-constrained supply chain incorporating risk aversion", Math. Problem. Eng., 2020, 1-17. https://doi.org/10.1155/2020/9515710.
  39. Qiu, R., Xu, J., Xie, H., Zeng, Z. and Lv, C. (2020), "Carbon tax incentive policy towards air passenger transport carbon emissions reduction", Transport. Res. Part D: Transport Environ., 85, 102441. https://doi.org/10.1016/j.trd.2020.102441.
  40. Quek, T.Y.A., Ee, W.L.A., Chen, W. and Ng, T.S.A. (2019), "Environmental impacts of transitioning to renewable electricity for Singapore and the surrounding region: A life cycle assessment", J. Cleaner Product., 214, 1-11. https://doi.org/10.1016/j.jclepro.2018.12.263.
  41. Ramanathan, V. and Feng, Y. (2009), "Air pollution, greenhouse gases and climate change: Global and regional perspectives", Atmosph. Environ., https://doi.org/10.1016/j.atmosenv.2008.09.063.
  42. Spalding-Fecher, R. (2011), "What is the carbon emission factor for the South African electricity grid?", J. Energ. Southern Africa, https://doi.org/10.17159/2413-3051/2011/v22i4a3225.
  43. Thomas, S., Dargusch, P., Harrison, S. and Herbohn, J. (2010), "Why are there so few afforestation and reforestation clean development mechanism projects?", Land Use Policy, 27(3), 880-887. https://doi.org/10.1016/j.landusepol.2009.12.002.
  44. Towoju, O. and Oladele, O. (2021), "Electricity generation from hydro, wind, solar and the environment", Eng. Technol. J., 39(9), 1392-1398. https://doi.org/10.30684/etj.v39i9.2145.
  45. Wang, C.H., Ko, M.H. and Chen, W.J. (2019), "Effects of Kyoto protocol on CO2 emissions: A five-country rolling regression analysis", Sustainability, 11(3), 744. https://doi.org/10.3390/su11030744.
  46. Xu, Y. and Cui, G. (2021), "Influence of spectral characteristics of the Earth's surface radiation on the greenhouse effect: Principles and mechanisms", Atmosph. Environ., https://doi.org/10.1016/j.atmosenv.2020.117908.
  47. Ye, F., Xiong, X., Li, L. and Li, Y. (2021), "Measuring the effectiveness of the Chinese certified emission reduction scheme in mitigating CO2 emissions: A system dynamics approach", J. Cleaner Product., 294, 125355. https://doi.org/10.1016/j.jclepro.2020.125355.
  48. Zainuddin, Z.B., Zailani, S., Govindan, K., Iranmanesh, M. and Amran, A. (2017), "Determinants and outcome of a clean development mechanism in Malaysia", J. Cleaner Product., 42, 1979-1986. https://doi.org/10.1016/j.jclepro.2016.11.086.