DOI QR코드

DOI QR Code

A critical review of fluoride removal from water by using different types of adsorbents

  • Prashant S. Lingayat (Department of Civil Engineering, Government College of Engineering) ;
  • Rampravesh K. Rai (Department of Civil Engineering, Government College of Engineering)
  • 투고 : 2023.03.14
  • 심사 : 2023.06.12
  • 발행 : 2023.06.25

초록

The water can be contaminated by natural sources or by industrial effluents. One such contaminant is fluoride. Fluoride contamination in the water environment due to natural and artificial activities has been recognized as one of the major problems worldwide. Among the commonly used treatment technologies applied for fluoride removal, the adsorption technique has been explored widely and offers a highly efficient simple and low-cost process for fluoride removal from water. This review paper the recent developments in fluoride removal from surface water by adsorption methods. Studies on fluoride removal from aqueous solutions using various carbon materials are reviewed. Various adsorbents with high fluoride removal capacity have been developed, however, there is still an urgent need to transfer the removal process to an industrial scale. Regeneration studies need to be performed to more extent to recover the adsorbent in field conditions, enhancing the economic feasibility of the process. Based on the review, technical strategies of the adsorption method including the Nano-surface effect, structural memory effect, anti-competitive adsorption and ionic sieve effect can be proposed. The design of adsorbents through these strategies can greatly improve the removal efficiency of fluoride in water and guide the development of new efficient methods for fluoride removal in the future. This paper describes brief discussions on various low-cost adsorbents used for the effective removal of fluoride from water.

키워드

참고문헌

  1. Aigbe, U.O., Onyancha, R.B., Ukhurebor, K.E. and Obodo, K.O. (2020), "Removal of fluoride ions using a polypyrrole magnetic nanocomposite influenced by a rotating magnetic field", RSC Advances, 10(1), 595-609. https://doi.org/10.1039/c9ra07379e.
  2. Akafu, T., Chimdie, A. and Gomoro, K. (2019), "Removal of fluoride from drinking water by sorption using diatomite modified with aluminum hydroxide", J. Anal. Method. Chem., 201, 483-494. https://doi.org/10.1155/2019/4831926.
  3. Babu, A.N., Reddy, D.S., Kumar, G.S., Ravindhranath, K. and Mohan, G.V.K. (2018), "Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent" J. Environ. Management, 218, 602-612. https://doi.org/10.1016/j.jenvman.2018.04.091.
  4. Balarak, D., Mahdavi, Y., Bazrafshan, E., Mahvi, A.H. and Esfandyari, Y. (2016), "Adsorption of fluoride from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetic, and thermodynamic parameters. Fluoride, 49(1), 71-83. https://www.researchgate.net/publication/296999657.
  5. Ben Amor, T., Kassem, M., Hajjaji, W., Jamoussi, F., Ben Amor, M. and Hafiane, A. (2018), "Study of defluoridation of water using natural clay minerals", Clays and Clay Minerals, 66(6), 493-499. https://doi.org/10.1346/CCMN.2018.064117.
  6. Brahman, K.D., Kazi, T.G., Baig, J.A., Afridi, H.I., Arain, S.S., Saraj, S., Arain, M.B. and Arain, S.A. (2016), "Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate", Chemosphere, 150, 320-328. https://doi.org/10.1016/j.chemosphere.2016.02.017.
  7. Bonyadi, Z., Kumar, P.S., Foroutan, R., Kafaei, R., Arfaeinia, H., Farjadfard, S. and Ramavandi, B. (2019), "Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: Application for real wastewater", Korean J. Chem. Eng., 36(10), 1595-1603. https://doi.org/10.1007/s11814-019-0373-0.
  8. Cai, H.M., Chen, G.J., Peng, C.Y., Xu, L.Y., Zhu, X.H., Zhang, Z.Z., Dong, Y.Y., Shang, G.Z., Ke, F., Gao, H.J. and Wan, X.C. (2015), "Enhanced removal of fluoride by tea waste supported hydrous aluminium oxide nanoparticles: anionic polyacrylamide mediated aluminium assembly and adsorption mechanism", RSC Advances, 5(37), 29266-29275. https://doi.org/10.1039/C5RA01560J.
  9. Chao, C.F., Zhao, Y.X., Song, Q., Min, J., Wang, Z.J., Ma, H L. and Li, X. (2019), "Volcanic rock-based ceramsite adsorbent for highly selective fluoride removal: function optimization and mechanism", J. Chem. Technol. Biotech., 94(7), 2263-2273. https://doi.org/10.1002/jctb.6014.
  10. Chiavola, A., D'Amato, E. and Boni, M.R. (2019), "Comparison of diferent iron oxide adsorbents for combined arsenic, vanadium and fuoride removal from drinking water", Int. J. Environ. Sci. Tech., 100-112. https://doi.org/10.1007/s13762-019-02316-4.
  11. Chatterjee, S., Jha, S. and De, S. (2018), "Novel carbonized bone meal for defluoridation of groundwater: Batch and column study", J. Environ. Sci. Health Part A-Toxic/Hazardous Substances & Environ. Eng., 53(9), 832-846. https://doi.org/10.1080/10934529.2018.1455378.
  12. Chen, J., Shu, C.J., Wang, N., Feng, J.T., Ma, H.Y. and Yan, W. (2017), "Adsorbent synthesis of polypyrrole/TiO2 for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism", J. Colloid Interface Sci., 495, 44-52. https://doi.org/doi.org/10.1016/j.jcis.2017.01.084.
  13. Chen, L., Zhang, K.S., He, J.Y., Xu, W.H., Huang, X.J. and Liu, J.H. (2016), "Enhanced fluoride removal from water by sulfate-doped hydroxyapatite hierarchical hollow microspheres", Chem. Eng. J., 285, 616-624. https://doi.org/10.1016/j.cej.2015.10.036.
  14. Chen, Y.H., Shen, C.S., Rashid, S., Li, S., Ali, B.A. and Liu, J.S. (2017), "Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water", J. Colloid Interface Sci., 491, 207-215. https://doi.org/10.1016/j.jcis.2016.12.032.
  15. Chiavola, A., D'Amato, E. and Marcantonio, C.D. (2022), "Comparison of Adsorptive Removal of Fluoride from Water by Different Adsorbents under Laboratory and Real Conditions", Water, 14, 1423. https://doi.org/10.3390/w14091423.
  16. Choong, C.E., Wong, K.T., Jang, S.B., Nah, I.W., Choi, J., Ibrahim, S., Yoon, Y. and Jang, M. (2020), "Fluoride removal by palm shell waste-based powdered activated carbon vs. functionalized carbon with magnesium silicate: Implications for their application in water treatment", Chemosphere, 239, 124-134. https://doi.org/10.1016/j.chemosphere.2019.124765.
  17. Das, D. and Nandi, B.K. (2020), "Simultaneous removal of fluoride and Fe (II) ions from drinking water by electrocoagulation", J. Environ. Chem. Eng., 8, 103643. https://doi.org/10.1016/j.jece.2019.103643.
  18. Dehghani, M.H., Farhang, M., Alimohammadi, M., Afsharnia, M. and McKay, G. (2018), "Adsorptive removal of fluoride from water by activated carbon derived from CaCl2-modified Crocus sativus leaves: Equilibrium adsorption isotherms, optimization, and influence of anions", Chem. Eng. Commun., 205 (7), 955-965. https://doi.org/10.1080/00986445.2018.1423969.
  19. Dehghani, M.H., Haghighat, G.A., Yetilmezsoy, K., McKay, G., Heibati, B., Tyagi, I., Agarwal, S. and Gupta, V.K. (2016), "Adsorptive removal of fluoride from aqueous solution using single and multi-walled carbon nanotubes", J. Molecular Liquids, 216, 401-410. https://doi.org/10.1016/j.molliq.2016.01.057.
  20. Deng, H., Chen, Y., Cao, Y.K. and Chen, W.Y. (2016), "Enhanced phosphate and fluoride removal from aqueous solution by ferric-modified chromium (III)-fibrous protein", J. Taiwan Inst. Chem. Engineers, 68, 323-331. https://doi.org/10.1016/j.jtice.2016.09.017.
  21. Dewage, N.B., Liyanage, A.S., Pittman, C.U., Mohan, D. and Mlsna, T. (2018), "Fast nitrate and fluoride adsorption and magnetic separation from water on alpha-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar", Bioresour. Technol., 263, 258-265. https://doi.org/10.1016/j.biortech.2018.05.001.
  22. Dhillon, A., Nair, M., Bhargava, S.K. and Kumar, D. (2015), "Excellent fluoride decontamination and antibacterial efficacy of Fe-Ca-Zr hybrid metal oxide nanomaterial", J. Colloid Interface Sci., 457, 289-297. https://doi.org/10.1016/j.jcis.2015.06.045.
  23. El-Said, G.F., El-Sadaawy, M.M. and Aly-Eldeen, M.A. (2018), "Adsorption isotherms and kinetic studies for the defluoridation from aqueous solution using eco-friendly raw marine green algae, Ulva Lactuca", Environ. Monit.Assessment, 190(14), 205-220. https://doi.org/10.1007/s10661-017-6392-6.
  24. Gao, M., Wang, W., Yang, H.B. and Ye, B.C. (2020), "Efficient removal of fluoride from aqueous solutions using 3D flower-like hierarchical zinc-magnesium-aluminum ternary oxide microspheres", Chem. Eng. J., 380, 122459. https://doi.org/10.1016/j.cej.2019.122459.
  25. Gebrewold, B.D., Kijjanapanich, P., Rene, E.R., Lens, P.N.L. and Annachhatre, A.P. (2019), "Fluoride removal from groundwater using chemically modified rice husk and corn cob activated carbon", Environ. Technol., 40(22), 2913-2927. https://doi.org/10.1080/09593330.2018.1459871.
  26. Gogoi, S., Nath, S.K., Bordoloi, S. and Dutta, R.K. (2015), "Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid", J. Environ. Management, 152, 132-139. https://doi.org/10.1016/j.jenvman.2015.01.031.
  27. He, J.Y., Zhang, K.S., Wu, S.B., Cai, X.G., Chen, K., Li, Y.L., Sun, B., Jia, Y., Meng, F.L., Jin, Z., Kong, L. T. and Liu, J.H. (2016), "Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water", J. Hazardous Mater., 303, 119-130. https://doi.org/doi:10.1016/j.jhazmat.2015.10.028.
  28. Kang, D.J., Yu, X.L. and Ge, M.F. (2017), "Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal", Chem. Eng. J., 330, 36-43. https://doi.org/10.1016/j.cej.2017.07.140.
  29. Kang, J.H., Gou, X.Q., Hu, Y.H., Sun, W., Liu, R.Q., Gao, Z.Y. and Guan, Q.J. (2019), "Efficient utilisation of flue gas desulfurization gypsum as a potential material for fluoride removal", Sci. Total Environ., 649, 344-352. https://doi.org/10.1016/j.scitotenv.2018.08.416.
  30. Kanrar, S., Ghosh, A., Ghosh, A., Mondal, A., Sadhukhan, M., Ghosh, U.C. and Sasikumar, P. (2020), "One-pot synthesis of Cr(III)-incorporated Zr(IV) oxide for fluoride remediation: a lab to field performance evaluation study", Environ. Sci. Pollut. R., 27(13), 15029-15044. https://doi.org/10.1007/s11356-020-07980-5.
  31. Kazi, T.G., Brahman, K.D., Baig, J.A. and Afridi, H.I. (2018), "A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater", J. Hazard. Mater., 357, 159-167. https://doi.org/10.1016/j.jhazmat.2018.05.069.
  32. Lopez-Guzman, M., Alarcon-Herrera, M.T., Irigoyen-Campuzano, J.R., Torres-Castanon, L.A. and Reynoso-Cuevas, L. (2019), "Simultaneous removal of fluoride and arsenic from well water by electrocoagulation", Sci. Total Environ., 678, 181-187. https://doi.org/10.1016/j.scitotenv.2019.04.400.
  33. Li, C.L., Chen, N., Zhao, Y.A., Li, R. and Feng, C.P. (2016), "Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism", Chemosphere, 163, 81-89. https://doi.org/10.1016/j.chemosphere.2016.08.016.
  34. Li, R., Tian, X.N., Ashraf, I. and Chen, B. (2020), "Fluoride removal using a chelating resin containing phosphonic-sulfonic acid bifunctional group", J. Chromatography A, 21, 460-490. https://doi.org/10.1016/j.chroma.2019.460697.
  35. Li, Z.P., Li, H., Xia, H., Ding, X.S., Luo, X.L., Liu, X.M. and Mu, Y. (2015), "Triarylboron-Linked Conjugated Microporous Polymers: Sensing and Removal of Fluoride Ions", Chemistry-A Eur. J., 21(48), 17355-17362. https://doi.org/10.1002/chem.201502241.
  36. Manna, S., Saha, P., Roy, D., Sen, R. and Adhikari, B. (2015), "Defluoridation potential of jute fibres grafted with fatty acyl chain", Appl. Surf. Sci., 356, 30-38. https://doi.org/10.1016/j.apsusc.2015.08.007.
  37. Medellin-Castillo, N.A., Cruz-Briano, S.A., Leyva-Ramos, R., Moreno-Pirajan, J.C., Torres-Dosal, A., Giraldo-Gutierrez, L., Labrada-Delgado, G.J., Perez, R.O., Rodriguez-Estupinan, J.P., Lopez, S.Y.R. and Mendoza, M.S.B. (2020), "Use of bone char prepared from an invasive species, pleco fish (Pterygoplichthys spp.) to remove fluoride and Cadmium (II) in water", J. Environ. Management, 256, 301-311. https://doi.org/10.1016/j.jenvman.2019.109956.
  38. Mei, L.P., Peng, C.Y., Qiao, H.H., Ke, F., Liang, J., Hou, R.Y., Wan, X.C. and Cai, H.M. (2019), "Enhanced removal of fluoride by zirconium modified tea waste with extrusion treatment: kinetics and mechanism", RSC Advances, 9(57), 33345-33353. https://doi.org/10.1039/c9ra07155e.
  39. Mouelhi, M., Giraudet, S., Amrane, A. and Hamrouni, B. (2016), "Competitive adsorption of fluoride and natural organic matter onto activated alumina", Environ. Technol., 37(18), 2326-2336. https://doi.org/10.1080/09593330.2016.1149521.
  40. Mukherjee, S., Dutta, S., Ray, S. and Halder, G. (2018), "A comparative study on defluoridation capabilities of biosorbents: isotherm, kinetics, thermodynamics, cost estimation, and eco-toxicological study", Environ. Sci. Pollut. R., 210-227. https://doi.org/10.1007/s11356-018-1931-4.
  41. Mudzielwana, R., Gitari, M.W., Akinyemi, S.A. and Msagati, T.A.M. (2017), "Synthesis and physicochemical characterization of MnO2 coated Na-bentonite for groundwater defluoridation: Adsorption modelling and mechanistic aspect", Appl. Surf. Sci., 422, 745-753. https://doi.org/10.1016/j.apsusc.2017.05.194.
  42. Mukherjee, S., Ramireddy, H., Baidya, A., Amala, A.K., Sudhakar, C., Mondal, B., Philip, L. and Pradeep, T. (2020), "Nanocellulose-reinforced organo-inorganic nanocomposite for synergistic and affordable defluoridation of water and an evaluation of its sustainability metrics", ACS Sustain. Chem. Eng., 8(1), 139-147. https://doi.org/10.1021/acssuschemeng.9b04822.
  43. Mullick, A. and Neogi, S. (2018), "Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption", Ultrasonics Sonochemistry, 45, 65-77. https://doi.org/10.1016/j.ultsonch.2018.03.002.
  44. Phillips, D.H., Sen Gupta, B., Mukhopadhyay, S. and Sen Gupta, A.K. (2018), "Arsenic and fluoride removal from contaminated drinking water with Haix-Fe-Zr and Haix-Zr resin beads", Journal of Environmental Management, 215, 132-142. https://doi.org/10.1016/j.jenvman.2018.03.018.
  45. Pillai, P., Dharaskar, S., Pandian, S. and Panchal, H. (2020), "Overview of fluoride removal from water using separation techniques", Environ. Technol., 101246, https://doi.org/10.1016/j.eti.2020.101246.
  46. Raghav, S. and Kumar, D. (2019), "Comparative kinetics and thermodynamic studies of fluoride adsorption by two novel synthesized biopolymer composites", Carbohydrate Polymers, 203, 430-440. https://doi.org/10.1016/j.carbpol.2018.09.054.
  47. Raj, R.M. and Raj, V. (2019), "Electrosynthesis of Zr-loaded copolymer coatings on Al for defluoridation of water and its corrosion protection ability", Progress in Organic Coatings, 137, 105065. https://doi.org/10.3390/ma14206145.
  48. Rao, M.M. and Metre, M. (2014), "Effective low-cost adsorbents for removal of fluoride from water: A review", Int. J. Sci. Res. (IJSR), 3(6), 120-124. https://doi.org/10.21275/02014140.
  49. Rojas-Mayorga, C.K., Bonilla-Petriciolet, A., Silvestre-Albero, J., Aguayo-Villarreal, I.A. and Mendoza-Castillo, D.I. (2015), "Physico-chemical characterization of metal-doped bone chars and their adsorption behaviour for water defluoridation", Appl. Surface Sci., 355, 748-760. https://doi.org/10.1016/j.apsusc.2015.07.163.
  50. Roy, S., Das, P., Sengupta, S. and Manna, S. (2017), "Calcium impregnated activated charcoal: Optimization and efficiency for the treatment of fluoride-containing solution in batch and fixed bed reactor", Process Saf. Environ, 109, 18-29. https://doi.org/doi:10.1016/j.psep.2017.03.026.
  51. Saikia, J., Sarmah, S., Saikia, P. and Goswamee, R. L. (2019), "Harmful weed to prospective adsorbent: low-temperature-carbonized Ipomoea carnea stem carbon coated with aluminium oxyhydroxide nanoparticles for defluoridation", Environ. Sci. Pollution Res., 26(1), 721-737. https://doi.org/10.1007/s11356-018-3572-z.
  52. Solanki, Y.S., Agarwal, M., Maheshwari, K., Gupta, S., Shukla, P. and Gupta, A.B. (2020), "Removal of fluoride from water by using a coagulant (inorganic polymeric coagulant)", Environ. Sci. Pollut. R., 110-119. https://doi.org/10.1007/s11356-020-09579-2.
  53. Saini, A., Maheshwari, P.H., Tripathy, S.S., Waseem, S. and Dhakate, S.R. (2020), "Processing of rice straw to derive carbon with efficient de-fluoridation properties for drinking water treatment", J. Water Process Eng., 34, 136-151. https://doi.org/10.1016/j.jwpe.2020.101136.
  54. Salomon-Negrete, M.A., Reynel-Avila, H.E., Mendoza-Castillo, D.I., Bonilla-Petriciolet, A. and Duran-Valle, C.J. (2018), "Water defluoridation with avocado-based adsorbents: Synthesis, physicochemical characterization and thermodynamic studies", J. Molecular Liquids, 254, 188-197. https://doi.org/10.1016/j.molliq.2018.01.084.
  55. Sarkar, C., Basu, J.K. and Samanta, A.N. (2019), "Experimental and kinetic study of fluoride adsorption by Ni and Zn modified LD slag based geopolymer", Chemical Engineering Research & Design, 142, 165-175. https://doi.org/10.1016/j.cherd.2018.12.006.
  56. Sharma, P., Sen, K., Thakur, P., Chauhan, M. and Chauhan, K. (2019), "Spherically shaped pectin-g-poly(amidoxime)-Fe complex: A promising innovative pathway to tailor a new material in high amidoxime functionalization for fluoride adsorption", Int. J. Biol. Macromol., 140, 78-90. https://doi.org/10.1016/j.ijbiomac.2019.08.098.
  57. Vijayeeswarri, J., Geethapriyai, M. and Ramamurthy, V. (2019), "Community level defluoridation of groundwater with limestone derived adsorbent", Process Saf. Environ., 127, 9-15. https://doi.org/10.1016/j.psep.2019.04.029.
  58. Wang, J., Chen, N., Feng, C. and Li, M. (2018), "Performance and mechanism of fluoride adsorption from groundwater by lanthanum-modified pomelo peel biochar", Environ. Sci. Pollut. R., 315-325. https://doi.org/10.1007/s11356-018-1727-6.
  59. Wang, J., Kang, D.J., Yu, X.L., Ge, M.F. and Chen, Y.T. (2015), "Synthesis and characterization of Mg-Fe-La trimetal composite as an adsorbent for fluoride removal", Chem. Eng. J., 264, 506-513. https://doi.org/10.1016/j.cej.2014.11.130.
  60. Wang, M., Yu, X., Yang, C., Yang, X., Lin, M., Guan, L. and Ge, M. (2017), "Removal of fluoride from aqueous solution by Mg-Al-Zr triple-metal composite", Chem. Eng. J., 322, 246-253. https://doi.org/10.1016/j.cej.2017.03.155.
  61. Wang, M.J., Yan, W.J., Kong, W., Wu, Z.J., An, X.W., Wang, Z.D., Hao, X.G. and Guan, G.Q. (2017), "An electroactive and regenerable Fe3O4@polypyrrole nanocomposite: Fabrication and its defluorination in an electromagnetic coupling system", Ind. Eng. Chem. Res., 56(44), 12738-12744. https://doi.org/10.1021/acs.iecr.7b02601.
  62. Wong, E.Y. and Stenstrom, M.K. (2018), "Onsite defluoridation system for drinking water treatment using calcium carbonate", J. Environ. Management, 216, 270-274. https://doi.org/10.1016/j.jenvman.2017.06.060.
  63. Ye, C., Sun, Y., Pei, X., Sunc, J. and Wua, Y. (2016), "Mass transfer and equilibrium characteristics of defluorination from groundwater by emulsion liquid membrane", J Chem Technol Biotechnol, 56(7), 43-49. https://doi.org/10.1002/jctb.5000.
  64. Yu, Y., Wang, C.H., Guo, X. and Chen, J.P. (2015), "Modification of carbon derived from Sargassum sp. by lanthanum for enhanced adsorption of fluoride", J. Colloid Interface Sci., 441, 113-120. https://doi.org/10.1016/j.jcis.2014.10.039.
  65. Zhang, L.Z.; Tan, W.; Wang, R.; Yang, Y.J.; Yang, M. and Wang, H.B. (2018), "The characterization of mesoporous silica (Ms) supporting cerium carbonate (Ms-Ce) and its adsorption performance for defluorination in aqueous solutions", Desalination Water Treatment, 135, 362-371. https://doi.org/10.5004/dwt.2018.23276
  66. Zhang, S.Y., Lyu, Y., Su, X.S., Bian, Y.Y., Yu, B.W. and Zhang, Y.L. (2016), "Removal of fluoride ion from groundwater by adsorption on lanthanum and aluminium loaded clay adsorbent", Environ. Earth Sci., 75(5), 401-410. https://doi.org/10.1007/s12665-015-5205-x.
  67. Zhou, J., Yu, J., Liao, H., Zhang, Y.D. and Luo, X.G. (2020), "Facile fabrication of bimetallic collagen fibre particles via immobilizing zirconium on chrome-tanned leather as adsorbent for fluoride removal from groundwater near hot spring", Separation Sci. Technol., 55(4), 658-671. https://doi.org/10.1080/01496395.2019.1574826.
  68. Zhu, J.Y., Lin, X.Y., Wu, P.W., Zhou, Q.S. and Luo, X.G. (2015), "Fluoride removal from aqueous solution by Al(III)-Zr(IV) binary oxide adsorbent", Appl. Surface Sci., 357, 91-100. https://doi.org/10.1016/j.apsusc.2015.09.012.