DOI QR코드

DOI QR Code

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy (Faculty of Engineering, Hasanuddin University) ;
  • Baharuddin Hamzah (Department of Architecture, Faculty of Engineering, Hasanuddin University) ;
  • Ria Wikantari (Department of Architecture, Faculty of Engineering, Hasanuddin University) ;
  • Rosady Mulyadi (Department of Architecture, Faculty of Engineering, Hasanuddin University)
  • Received : 2023.11.15
  • Accepted : 2023.12.22
  • Published : 2023.12.30

Abstract

Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.

Keywords

References

  1. ANSI/ASHRAE 55. (2020). Standard Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating and Airconditioning Engineers Inc. Atlanta, USA, https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy.
  2. Albatayneh, A., D. Alterman., A. Page., & B. Moghtaderi. (2018). An alternative approach to the simulation of wind effects on the thermal performance of buildings. International Journal of Computational Physics Series, vol. 1, no. 1, pp. 35-44, DOI: 10.29167/a1i1p35-44.
  3. Adityo., A. (2016). Improving Thermal Comfort of Road Corridor through Simulation-based Vegetation Design, Case Study: Jalan Supadi, Kotabaru, YOGYAKARTA. Journal of Composition Architecture, vol. 11, no.3, pp. 159-168.
  4. Center built environment., "Thermal Comfort Tool," https://comfort.cbe.berkeley.edu/en-16798. (accessed July. 9, 2023).
  5. Fibrianto, J. Z., & Hilmy, M. (2018). Effectiveness of Shading by Trees and Buildings in Urban Road Corridors to Achieve Thermal Comfort. EMARA: Indonesian Journal of Architecture, vol. 4, no.1, pp. 65-70, DOI.org/10.29080/emara.v4i1.177.
  6. Fabozzi, M., & Dama, A. (2020). Field study on thermal comfort in naturally ventilated and air-conditioned university classrooms. Journal Indoor and Built Environment, vol. 29, no. 6, pp. 851-859, https://doi.org/10.1177/1420326X19887481.
  7. Hamzah, B., Gou, Z., Mulyadi, R., & Amin, S. (2018). Thermal Comfort Analyses of Secondary School Students in the Tropics. Buildings, 8.
  8. Hendrawati, D. (2016). Water as a Microclimate Control Tool in Buildings. Journal of Civil Engineering & Planning, volume 18, no.2, pp: 97 - 106.
  9. I. Rajapaksha., H. Nagai., & M. Okumiya. (2018). Indoor Thermal Modification of a Ventilated Courtyard House in the Tropics. Journal Asian Archit. Build. Eng., vol. 1, no. 1, pp. 87-89, https://doi.org/10.3130/jaabe.1.87.
  10. Ilman Bastian, S. (2015). Effect of Opening Design on Building Envelope on Energy Efficiency in Simple Rental Flats. Unpublished journal, Retrieved from https://jurnalonline.itenas.ac.id/index.php/rekakarsa/article/view/628.
  11. J.Nazhatulzalkis., K. M.Faris., W. Suriani., & K.Mustafa. (2022). Indoor Thermal Environment in Tropical Climate Residential Building. Emerging Technology for Sustainable Development Congress (ETSDC), DOI: 10.1051/e3sconf/20140301026.
  12. Koerniawan, M. D., & Gao, W. (2015). Investigation and evaluation of thermal comfort and walking comfort in hot-humid climate case study: The open spaces of Mega Kuningan-Superblock in Jakarta. International Journal of Building, Urban, Interior and Landscape Technology (BUILT), vol. 6, pp. 53-72, https://ph02.tci- thaijo.org/index.php/BUILT/article/view/169293.
  13. Kuru, M., & Calis, G. (2017). Understanding the Relationship between Indoor Environmental Parameters and Thermal Sensation of Users Via Statistical Analysis. Procedia Eng. 196, pp. 808-815. https://doi.org/10.1016/j.proeng.2017.08.011
  14. Latifah, N. L., Perdana, H., Prasetya, A., & Siahaan, O. P. (2013). Thermal Comfort Study on Student Centre Building Itenas Bandung. REKA KARSA Journal, vol. 1.
  15. Moore, C. W., & Lidz, J. (1994). Water and architecture. Thames and Hudson, London.
  16. Nursulistiyono, H., Utama, A. R. I., & Sujatmiko, W. (2019). Modelling wind openings for computational fluid dynamic (CFD) simulation. eProceedings of Engineering, vol. 6, no. 2, pp.5178-5182, ISSN.2355-9365.
  17. Permana, T., & Sawab, H. (2020). The Presence of Wind in Type 70 M2 Residential (A Simulation of Residential Thermal Comfort), Raut Journal, vol.1, no.2, pp. 33-41.
  18. Qurrotul A'yun., P. C. W., & Muhammad Choirul Khafidz. (2018). Exploration of Lecture Room Ventilation Design to Achieve Thermal Comfort. EMARA - Indonesian Journal of Architecture, vol. 4, no. 2, pp. 119-125, DOI:https://doi.org/10.1111/j.1600-0668.2004.00320.x.
  19. Rahman, A., Tharziansyah., Nurfansyah., & Agusniansyah. (2021). Simulation and Analysis of Thermal Environment and Building Comparing Wetland Conditions in Banjarmasin-Indonesia and Saga-Japan. IOP Conference Series: Earth and Environmental Science 764, IOP Publishing, The 5th International Conference on Indonesian Architecture and Planning, DOI:10.1088/1755-1315/764/1/012001.
  20. Rahim, R., Asniawaty., Maresenjoyo. T., Amin, S., & Hiromi, R. (2016). Characteristics of Air Temperature and Thermal Comfort Data in Makassar. Proceedings of IPLBI Scientific Meeting. Hasanuddin University, Makassar.
  21. Rahim, R., Hamzah, B., Mulyadi, R., Jamala, N., & Kusno, A. (2017). Outdoor Air Temperature and Relative Humidity.
  22. Rahmawati, R., Akbar, A. K. F., & Agustin, F. K. (2016). Natural Airing Related to Ventilation System on Thermal Comfort of Inner Industrial Flats. REKA KARSA, vol. 4(1), DOI: https://doi.org/10.26760/rekakarsa.v4i1.1377.
  23. Sugini. (2004). Interpretation of Terms of Thermal Comfort Quality of Space with Space Climate Variables. LOGIKA, Volume 1 Number 2(3), pp. 3-17, Retrieved from http://journal.uii.ac.id/index.php/index/oai. https://doi.org/10.20885/logika.vol1.iss2.art1
  24. Syarifah, H. N. (2021). The function of vegetation on thermal comfort control in the development of landscape design for the Ria Rio Reservoir area. East Jakarta.
  25. Setyowati, E. (2015). Thermal and Acoustic, textbooks Building Physics, 2nd edition, department of Architecture faculty of Engineering Diponegoro University, published CV. Tiga media pratama, ISBN:978-602-14598-4-3.
  26. Tahang, T. (2016). Building Thermal Simulation System Engineering Using Computating Fluid Dynamic (CFD) Tool. Journal Techno Entrepreneur Acta, vol. 1.
  27. Wylson, A. (2013). Aquatecture: architecture and water", Elsevier.
  28. Wong, N. H., & Khoo, S. S. (2003). Thermal comfort in classrooms in the tropics, Energy and buildings, vol. 35(4), pp. 337-351. https://doi.org/10.1016/S0378-7788(02)00109-3
  29. Yulita, E. N. (2019). Landscape Management on Thermal Comfort Based on THI Index at Singha Merjosari Park, Malang City, Journal of Architecture Department Students, vol. 6, no.4.
  30. Zango, M. S., Danladi, A., Abdullah, I. A., & Luke, B. J. (2022). Vegetation as a Strategy to Improve the Thermal Performance of Fully Enclosed Courtyard in Tropical Climate, Texas Journal of Agriculture and Biological Sciences, vol. 2, pp. 10-24, https://zienjournals.com.
  31. Zhang, J., Lie, P., & Ma, Mingxiao. (2022). Thermal Environment and Thermal Comfort in University Classrooms during the Heating Season. Buildings, vol. 12, pp. 1-20, https://doi.org/10.3390/buildings12070912.