Acknowledgement
This study was carried out with the support (PJ015675) of the National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.
References
- James TY, Stajich JE, Hittinger CT, et al. Toward a fully resolved fungal tree of life. Annu Rev Microbiol. 2020;74(1):291-313. doi: 10.1146/annurev-micro-022020-051835.
- Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94(4):1443-1476. doi: 10.1111/brv.12510.
- Hyde KD, Jones EBG, Liu J-K, et al. Families of Dothideomycetes. Fungal Divers. 2013;63(1):1-313. doi: 10.1007/s13225-013-0263-4.
- Schoch CL, Crous PW, Groenewald JZ, et al. A classwide phylogenetic assessment of Dothideomycetes. Stud Mycol. 2009;64:1-15s10. doi: 10.3114/sim.2009.64.01.
- Thambugala KM, Ariyawansa HA, Li Y-M, et al. Dothideales. Fungal Divers. 2014;68(1):105-158. doi: 10.1007/s13225-014-0303-8.
- Hongsanan S, Hyde KD, Phookamsak R, et al. Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes. Fungal Divers. 2020;105(1):17-318. doi: 10.1007/s13225-020-00462-6.
- Naughton PJ, Marchant R, Naughton V, et al. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol. 2019;127(1):12-28. doi: 10.1111/jam.14243.
- Eras-Munoz ~ E, Farre A, Sanchez A, et al. Microbial biosurfactants: a review of recent environmental applications. Bioengineered. 2022;13(5): 12365-12391. doi: 10.1080/21655979.2022.2074621.
- Bjerk TR, Severino P, Jain S, et al. Biosurfactants: properties and applications in drug delivery, biotechnology and ecotoxicology. Bioengineering. 2021;8(8):115. doi: 10.3390/bioengineering8080115.
- Uchegbu IF, et al. Biosurfactants: fundamentals of pharmaceutical nanoscience. Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
- Johnson P, Trybala A, Starov V, et al. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv Colloid Interface Sci. 2021;288:102340. doi: 10.1016/j.cis.2020.102340.
- Siyal AA, Shamsuddin MR, Low A, et al. A review on recent developments in the adsorption of surfactants from wastewater. J Environ Manage. 2020; 254:109797. doi: 10.1016/j.jenvman.2019.109797.
- Camarate MC, Merma AG, Hacha RR, et al. Selective bioflocculation of ultrafine hematite particles from quartz using a biosurfactant extracted from Candida stellata yeast. Sep Sci Technol. 2022; 57(1):36-47. doi: 10.1080/01496395.2021.1881972.
- Derguine-Mecheri L, et al. Biosurfactant production from newly isolated rhodotorula sp. YBR and its great potential in enhanced removal of hydrocarbons from contaminated soils. World J Microbiol Biotechnol. 2021;37(1):1-18. https://doi.org/10.1007/s11274-020-02944-w
- Ribeiro BG, de Veras BO, dos Santos Aguiar J, et al. Biosurfactant produced by Candida utilis UFPEDA1009 with potential application in cookie formulation. Electron J Biotechnol. 2020;46:14-21. doi: 10.1016/j.ejbt.2020.05.001.
- Kim JS, Lee IK, Yun BS, et al. A novel biosurfactant produced by aureobasidium pullulans L3-GPY from a tiger lily wild flower, lilium lancifolium thunb. PLOS One. 2015;10(4):e0122917. doi: 10. 1371/journal.pone.0122917. https://doi.org/10.1371/journal.pone.0122917
- Kim J-S, Lee M, Ki D-W, et al. Production of a new biosurfactant by a new yeast species isolated from Prunus mume Sieb. et Zucc. J Microbiol Biotechnol. 2023;33(8):1023-1029. doi: 10.4014/jmb.2205.05052.
- White TJ, Bruns TD, Lee SB, et al. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
- Altschul SF, Madden TL, Sch€affer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25(17):3389-3402. doi: 10.1093/nar/25.17.3389.
- Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. doi: 10.1093/nar/gkh340.
- Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027. doi: 10.1093/molbev/msab120.
- Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368-376. doi: 10.1007/BF01734359.
- Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol. 1971;20(4):406-416. doi: 10.2307/2412116.
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-425.
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120. doi: 10.1007/BF01731581.
- Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. evolution. 1985; 39(4):783-791. doi: 10.2307/2408678.
- Kurtzman CP, et al. Chapter 7 - Methods for isolation, phenotypic characterization and maintenance of yeasts. (Fifth Edition), In C.P. Kurtzman, J.W. Fell, and T. Boekhout, editors. The yeasts. (Elsevier: London; 2011.p. 87-110.
- Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek. 1998;73(4):331-371. doi: 10.1023/a:1001761008817.
- Vu D, Groenewald M, Szoke S, et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol. 2016;85(1):91-105. doi: 10.1016/j.simyco.2016.11.007.