DOI QR코드

DOI QR Code

Neodothiora pruni sp. nov., a Biosurfactant-Producing Ascomycetous Yeast Species Isolated from Flower of Prunus mume

  • Jeong-Seon Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Miran Lee (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jun Heo (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Soon-Wo Kwon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Bong-Sik Yun (Division of Biotechnology and Advanced institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University) ;
  • Yiseul Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2023.06.12
  • Accepted : 2023.11.07
  • Published : 2023.12.31

Abstract

A yeast strain, designated as JAF-11T, was isolated from flower of Prunus mume Sieb. et Zucc. in Gwangyang, Republic of Korea. Phylogenetic analysis showed that strain JAF-11T was closely related to Neodothiora populina CPC 39399T with 2.07 % sequence divergence (12 nucleotide substitutions and three gaps in 581 nucleotides) in the D1/D2 domain of the large subunit (LSU) rRNA gene, and Rhizosphaera macrospora CBS 208.79T with 4.66 % sequence divergence (25 nucleotide substitutions and five gaps in 535 nucleotides) in the internal transcribed spacer (ITS) region. Further analysis based on the concatenated sequences of the D1/D2 domain of the LSU rRNA gene and the ITS region confirmed that strain JAF-11T was well-separated from Neodothiora populina CPC 39399T. In addition to the phylogenetic differences, strain JAF-11T was distinguished from its closest species, Neodothiora populina CPC 39399T and Rhizosphaera macrospora CBS 208.79T belonging to the family Dothioraceae by its phenotypic characteristics, such as assimilation of carbon sources. Hence, the name Neodothiora pruni sp. nov. is proposed with type strain JAF-11T (KACC 48808T; MB 850034).

Keywords

Acknowledgement

This study was carried out with the support (PJ015675) of the National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

References

  1. James TY, Stajich JE, Hittinger CT, et al. Toward a fully resolved fungal tree of life. Annu Rev Microbiol. 2020;74(1):291-313. doi: 10.1146/annurev-micro-022020-051835.
  2. Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94(4):1443-1476. doi: 10.1111/brv.12510.
  3. Hyde KD, Jones EBG, Liu J-K, et al. Families of Dothideomycetes. Fungal Divers. 2013;63(1):1-313. doi: 10.1007/s13225-013-0263-4.
  4. Schoch CL, Crous PW, Groenewald JZ, et al. A classwide phylogenetic assessment of Dothideomycetes. Stud Mycol. 2009;64:1-15s10. doi: 10.3114/sim.2009.64.01.
  5. Thambugala KM, Ariyawansa HA, Li Y-M, et al. Dothideales. Fungal Divers. 2014;68(1):105-158. doi: 10.1007/s13225-014-0303-8.
  6. Hongsanan S, Hyde KD, Phookamsak R, et al. Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes. Fungal Divers. 2020;105(1):17-318. doi: 10.1007/s13225-020-00462-6.
  7. Naughton PJ, Marchant R, Naughton V, et al. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol. 2019;127(1):12-28. doi: 10.1111/jam.14243.
  8. Eras-Munoz ~ E, Farre A, Sanchez A, et al. Microbial biosurfactants: a review of recent environmental applications. Bioengineered. 2022;13(5): 12365-12391. doi: 10.1080/21655979.2022.2074621.
  9. Bjerk TR, Severino P, Jain S, et al. Biosurfactants: properties and applications in drug delivery, biotechnology and ecotoxicology. Bioengineering. 2021;8(8):115. doi: 10.3390/bioengineering8080115.
  10. Uchegbu IF, et al. Biosurfactants: fundamentals of pharmaceutical nanoscience. Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
  11. Johnson P, Trybala A, Starov V, et al. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv Colloid Interface Sci. 2021;288:102340. doi: 10.1016/j.cis.2020.102340.
  12. Siyal AA, Shamsuddin MR, Low A, et al. A review on recent developments in the adsorption of surfactants from wastewater. J Environ Manage. 2020; 254:109797. doi: 10.1016/j.jenvman.2019.109797.
  13. Camarate MC, Merma AG, Hacha RR, et al. Selective bioflocculation of ultrafine hematite particles from quartz using a biosurfactant extracted from Candida stellata yeast. Sep Sci Technol. 2022; 57(1):36-47. doi: 10.1080/01496395.2021.1881972.
  14. Derguine-Mecheri L, et al. Biosurfactant production from newly isolated rhodotorula sp. YBR and its great potential in enhanced removal of hydrocarbons from contaminated soils. World J Microbiol Biotechnol. 2021;37(1):1-18. https://doi.org/10.1007/s11274-020-02944-w
  15. Ribeiro BG, de Veras BO, dos Santos Aguiar J, et al. Biosurfactant produced by Candida utilis UFPEDA1009 with potential application in cookie formulation. Electron J Biotechnol. 2020;46:14-21. doi: 10.1016/j.ejbt.2020.05.001.
  16. Kim JS, Lee IK, Yun BS, et al. A novel biosurfactant produced by aureobasidium pullulans L3-GPY from a tiger lily wild flower, lilium lancifolium thunb. PLOS One. 2015;10(4):e0122917. doi: 10. 1371/journal.pone.0122917. https://doi.org/10.1371/journal.pone.0122917
  17. Kim J-S, Lee M, Ki D-W, et al. Production of a new biosurfactant by a new yeast species isolated from Prunus mume Sieb. et Zucc. J Microbiol Biotechnol. 2023;33(8):1023-1029. doi: 10.4014/jmb.2205.05052.
  18. White TJ, Bruns TD, Lee SB, et al. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
  19. Altschul SF, Madden TL, Sch€affer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25(17):3389-3402. doi: 10.1093/nar/25.17.3389.
  20. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. doi: 10.1093/nar/gkh340.
  21. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-3027. doi: 10.1093/molbev/msab120.
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368-376. doi: 10.1007/BF01734359.
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol. 1971;20(4):406-416. doi: 10.2307/2412116.
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-425.
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111-120. doi: 10.1007/BF01731581.
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. evolution. 1985; 39(4):783-791. doi: 10.2307/2408678.
  27. Kurtzman CP, et al. Chapter 7 - Methods for isolation, phenotypic characterization and maintenance of yeasts. (Fifth Edition), In C.P. Kurtzman, J.W. Fell, and T. Boekhout, editors. The yeasts. (Elsevier: London; 2011.p. 87-110.
  28. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek. 1998;73(4):331-371. doi: 10.1023/a:1001761008817.
  29. Vu D, Groenewald M, Szoke S, et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol. 2016;85(1):91-105. doi: 10.1016/j.simyco.2016.11.007.