DOI QR코드

DOI QR Code

플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석

Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries

  • 김민경 (광운대학교 전자재료공학과) ;
  • 이동휘 (광운대학교 전자재료공학과) ;
  • 여찬규 (광운대학교 전자재료공학과) ;
  • 최수연 (광운대학교 전자재료공학과) ;
  • 최치원 (광운대학교 전자재료공학과) ;
  • 윤현민 (광운대학교 전자재료공학과)
  • Minkyung Kim (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Dong-hee Lee (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Changyu Yeo (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Sooyeon Choi (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Chiwon Choi (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Hyunmin Yoon (Department of Electronic Materials Engineering, Kwangwoon University)
  • 투고 : 2023.11.29
  • 심사 : 2023.12.26
  • 발행 : 2023.12.28

초록

Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

키워드

과제정보

이 논문은 2023년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012451, 2023년 산업혁신인재성장지원사업).

참고문헌

  1. J. Janek and W. G. Zeier: Nat. Energy, 8 (2023) 230.
  2. Z. Zhang and W. Q. Han: Nano-Micro Lett., 16 (2024) 24. https://doi.org/10.1007/s40820-023-01234-y
  3. Y. Sun: ACS Energy Lett., 5 (2020) 3221.
  4. S. Sharifi-Asl, J. Lu, K. Amine and R. Shahbazian-Yassar: Adv. Energy Mater., 9 (2019) 1900551.
  5. J. Jiang and J. R. Dahn: Electrochem. Commun., 6 (2004) 39.
  6. J. M. A. Mba, C. Masquelier, E. Suard and L. Croguennec: Chem. Mater., 24 (2012) 1223.
  7. X. Xue, Y. Xu and X. Ma: ACS Appl. Energy Mater., 3 (2020) 3553.
  8. M. Kim, S. Lee and B. Kang: Adv. Sci., 3 (2016) 1500366.
  9. M. M. Ren, Z. Zhou, L. W. Su and X. P. Gao: J. Power Source, 189 (2009) 786.
  10. T. Tanaka, H. Yamashita, R. Tsuchitani, T. Funabiki and S. Yoshida: J. Chem. Soc., Faraday Trans., 1 (1988) 2987.
  11. S. R. Sutton, J. Karner, J. Papike, J. S. Delaney, C. Shearer, M. Newville, P. Eng, M. Rivers and M. D. Dyar: Geochimica et Cosmochimica Acta, 69 (2005) 2333.
  12. Deswita, Sudaryanto, H. Djodi and E. Kartini: IOP Conf. Ser.: Mater. Sci. Eng., 432 (2018) 012059.