DOI QR코드

DOI QR Code

Assessment of Physical Habitats Characteristics in Naeseongcheon Basin Streams, Korea

내성천 유역 하천의 물리 서식지 특성 평가

  • Ki Heung Kim (Department of Civil and Infrastructure Engineering, Gyeongsang National University) ;
  • Heareyn Jung (Department of Civil and Infrastructure Engineering, Gyeongsang National University) ;
  • Il Hong (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Hong Koo Yeo (Department of Hydro Science and Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 김기흥 (경상국립대학교 건설시스템공학과) ;
  • 정혜련 (경상국립대학교 건설시스템공학과 ) ;
  • 홍일 (한국건설기술연구원 수자원하천연구본부 ) ;
  • 여홍구 (한국건설기술연구원 수자원하천연구본부)
  • Received : 2023.12.04
  • Accepted : 2023.12.12
  • Published : 2023.12.31

Abstract

This study applied the stream physical habitat assessment system to obtain basic information for river restoration and watershed management in high-gradient and mid-gradient streams in the Naeseongcheon basin. The total length of high-gradient and mid-gradient streams in the Naeseongcheon basin is about 273 km, and as a result of the assessment, it was analyzed that suboptimal reach was about 8.2 km, normal reach was 180.3 km, and marginal reach was 84.7 km. In addition, the physical habitat quality of high-gradient streams was analyzed to be normal condition with an average of 106 points (53%), and in particular, the score of channel/hydraulic category, which is the most important for the habitat of aquatic animals, was analyzed to be normal, close to the limit, with an average of 54 points (45%). The physical habitat quality of mid-gradient streams was found to be in normal condition with an average of 90 points (45%), and the score of channel/hydraulic category was in marginal condition with an average of 39 points (32%). Overall, among 165 reaches of high-gradient and mid-gradient streams in the Naeseongcheon basin, 4 reaches (3%) were evaluated as suboptimal, 119 reaches (72%) were normal, and 42 reaches (25%) were considered marginal. These results showed that the physical habitat of Naeseongcheon was significantly disturbed. Disturbance of stream physical habitat in the Naeseongcheon basin occured due to farmland around stream, urbanization, reservoir construction, and river maintenance.

본 연구는 내성천 유역의 급경사 및 중경사 하천에 하천복원 및 유역관리를 위한 기본 정보를 얻기 위해 하천의 물리 서식지 평가체계를 적용했다. 평가결과 내성천 유역의 급경사 및 중경사 하천 총연장은 약 273 km이며, 이 중에서 우수 약 8.2 km, 보통 180.3 km, 한계 84.7 km인 것으로 분석되었다. 또한 급경사 하천 전체의 물리 서식지 질은 평균 106점 (53%)으로 보통 등급이며, 특히 수서 동물의 서식처에 가장 중요한 하도/수리 영역은 평균 54점 (45%)으로 한계상태에 가까운 보통 등급인 것으로 분석되었다. 중경사 하천 물리 서식지 질은 평균 90점 (45%) 보통 등급이며, 하도/수리 영역 평균 39점 (32%) 한계상태로 나타났다. 전반적으로 내성천 유역의 급경사 및 중경사 하천 165개 구간 중 우수 4개 (3%), 보통 119개 (72%) 및 한계 42개 (25%) 구간으로 평가되었다. 이러한 결과는 내성천의 물리 서식지가 상당히 교란되었음을 보여준다. 내성천 유역의 하천 물리 서식지 교란은 하천주변의 경작지, 도시화, 저수지 건설 및 하천정비 등으로 발생하였다.

Keywords

Acknowledgement

본 연구는 환경부의 재원으로 한국환경산업기술원의 물관리연구사업의 지원을 받아 연구되었습니다 (1615012820).

References

  1. Dong, Z., Wang, Z., Liu, D., Li, L., Ren, C., Tang, X., Jia, M., and Liu, C. 2013. Assessment of habitat suitability for waterbirds in the West Songnen Plain, China, using remote sensing and GIS. Ecological Engineering 55: 94-100. https://doi.org/10.1016/j.ecoleng.2013.02.006
  2. EPA, 2004. Field operation manual. EPA 841-B-04-004.
  3. Gillenwater, D., Granata, T., and Zika, U. 2006. GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration. Ecological Engineering 28: 311-323. https://doi.org/10.1016/j.ecoleng.2006.08.003
  4. Jensen, M.E., Goodman, I.A., Bourgeron, P.S., Poff, N. L., and Brewer, C.K. 2001. Effectiveness of biophysical criteria in the hierarchical classification of drainage basins. Journal of the American Water Resources Association 37(5): 1155-1167. https://doi.org/10.1111/j.1752-1688.2001.tb03629.x
  5. Jowett, I.G. 1997. Instream flow methods : A comparison of approaches. Regulated Rivers : Resesrch and Management 13(2): 115-127. https://doi.org/10.1002/(SICI)1099-1646(199703)13:2<115::AID-RRR440>3.0.CO;2-6
  6. Jung, H.R. and Kim, K.H. 2015. An application of stream classifiꠓcation systems in the Nam river, Korea. Ecology and Resilient Infrastructure 2(2): 118-127 (in Korean). https://doi.org/10.17820/eri.2015.2.2.118
  7. Jung, H.R. and Kim, K.H. 2018. A development of an assessment system for stream physical environments in Korea. Journal of Korean Water Resources Association 51(8): 713-727. (in Korean)
  8. KICT, 2007. Developement of multi-functional river restoration techniques. KICT 2007(122): 32-69 (in Korean).
  9. Kim, D.C. and Park, I.S. 1999. A study on the evaluation criteria of stream naturalness for ecological environment restoration of stream corridors. Journal of Korean Institute of Landscape Architecture 17(3): 123-134. (in Korean with English summary).
  10. Kim, K.H. 2008. Assessment of physical river disturbance in Namgang-dam downstream. Journal of Korean Society of Environmental Restoration Technology 12(3): 83-97. (in Korean).
  11. Kim, K.H. 2009. Assessment of physical river disturbances by river improvement. Case study of Nam river and Youngcheon river. Journal of Korean Society of Environmental Restoration Technology 11(3): 74-86 (in Korean).
  12. Kim, K.H., Lee, H.R., and Jung, H.R. 2015. Characteristics of step-pool structure in the mountain streams around Mt. Jiri. Journal of Korean Water Resources Association 51(4): 313-322. (in Korean)
  13. LAWA (Landerarbeitsgemeinschaft Wasser), 2002. Gewasserstrukturgutekartierung in der Bundesrepublik Deutschland: ubersichtsverfahren, Berlin, Germany : 9-24. (in German)
  14. Lee, J.H., Kil, J.K., and Jeong, S.M. 2010. Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecological Engineering 36: 1251-1259. https://doi.org/10.1016/j.ecoleng.2010.05.004
  15. Maddock, I. 1999. The importance of physical habitat assessment for evaluating river health. Freshwater Biology 41(2): 373-391. https://doi.org/10.1046/j.1365-2427.1999.00437.x
  16. Ministry of Environment, 2022. RIMGIS. http://river.go.kr/basicPlan/basicPlan.do. Accessed 26 Feburary 2022.
  17. Montgomery, D.R. and Buffington, J.M. 1993. Channel classification, prediction of channel response, and assessment of channel condition. Washington State Department of Natural Resources - Timber, Fish and Wildlife. Olympia, WA, USA: 3-63.
  18. Montgomery, D.R. and Buffington, J.M. 1997. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin 109: 596-611. https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2
  19. Park, B.J., Shin, J.I., and Jung, K.S. 2005. The evaluation of river naturalness for biological habitat restoration: II. Application of evaluation method. Journal of Korean Water Resources Association 38(1): 37-48. (in Korean). https://doi.org/10.3741/JKWRA.2005.38.1.037
  20. Parsons, M., Thoms, M., and Norris, R. 2002. Australian River Assessment System: AusRivAS Physical Assessment Protocol. Monitoring River Heath Initiative Technical Report 22, Commonwealth of Australia and University of Canberra, Canberra, Australia.
  21. Rosgen, D.L. 1994. A classification of natural rivers. Catena 22(3): 169-199. https://doi.org/10.1016/0341-8162(94)90001-9
  22. SEPA, 2003. Field survey guidance manual: 2003 version. Scottish Environment Protection Agency, Environmental Agency, Bristol, UK
  23. Wood-Smith, R.D. and Buffington, J.M. 1996. Multivariate geomorphic analysis of forest streams : Implications for assessment of land use impacts on channel conditions. Earth Surface Processes and Landforms 21: 377-393. https://doi.org/10.1002/(SICI)1096-9837(199604)21:4<377::AID-ESP546>3.0.CO;2-2
  24. Yamamoto, K. 1988. Channel specific analysis. Public Works Research Institute Report 1394. (in Japanese)