DOI QR코드

DOI QR Code

데이터 리터러시 연구 분야의 주경로와 지적구조 분석

Analyzing the Main Paths and Intellectual Structure of the Data Literacy Research Domain

  • 이재윤 (명지대학교 문헌정보학과)
  • 투고 : 2023.11.23
  • 심사 : 2023.12.07
  • 발행 : 2023.12.30

초록

이 연구에서는 데이터 리터러시 분야 연구의 발전 경로와 지적구조 및 떠오르는 유망 주제를 파악하고자 하였다. 이를 위해서 Web of Science에서 검색한 데이터 리터러시 관련 논문은 교육학 분야와 문헌정보학 분야 논문이 전체의 60% 가까이를 차지하였다. 우선 인용 네트워크 분석에서는 페이지랭크 알고리즘을 사용해서 인용 영향력이 높은 다양한 주제의 핵심 논문을 파악하였다. 데이터 리터러시 연구의 발전 경로를 파악하기 위해서 기존의 주경로분석법을 적용해보았으나 교육학 분야의 연구 논문만 포함되는 한계가 있었다. 이를 극복할 수 있는 새로운 기법으로 페이지랭크 주경로분석법을 개발한 결과, 교육학 분야와 문헌정보학 분야의 핵심 논문이 모두 포함되는 발전 경로를 파악할 수 있었다. 데이터 리터러시 연구의 지적구조를 분석하기 위해서 키워드 서지결합 분석을 시행하였다. 도출된 키워드 서지결합 네트워크의 세부 구조와 군집 파악을 위해서 병렬최근접이웃클러스터링 알고리즘을 적용한 결과 대군집 2개와 그에 속한 소군집 7개를 파악할 수 있었다. 부상하는 유망 주제를 도출하기 위해서 각 키워드와 군집의 성장지수와 평균출판년도를 측정하였다. 분석 결과 팬데믹 상황과 AI 챗봇의 부상이라는 시대적 배경 하에서 사회정의를 위한 비판적 데이터 리터러시가 고등교육 측면에서 급부상하고 있는 것으로 나타났다. 또한 이 연구에서 연구의 발전경로를 파악하는 수단으로 새롭게 개발한 페이지랭크 주경로분석 기법은 서로 다른 영역에서 병렬적으로 발전하는 둘 이상의 연구흐름을 발견하기에 효과적이었다.

This study investigates the development path and intellectual structure of data literacy research, aiming to identify emerging topics in the field. A comprehensive search for data literacy-related articles on the Web of Science reveals that the field is primarily concentrated in Education & Educational Research and Information Science & Library Science, accounting for nearly 60% of the total. Citation network analysis, employing the PageRank algorithm, identifies key papers with high citation impact across various topics. To accurately trace the development path of data literacy research, an enhanced PageRank main path algorithm is developed, which overcomes the limitations of existing methods confined to the Education & Educational Research field. Keyword bibliographic coupling analysis is employed to unravel the intellectual structure of data literacy research. Utilizing the PNNC algorithm, the detailed structure and clusters of the derived keyword bibliographic coupling network are revealed, including two large clusters, one with two smaller clusters and the other with five smaller clusters. The growth index and mean publishing year of each keyword and cluster are measured to pinpoint emerging topics. The analysis highlights the emergence of critical data literacy for social justice in higher education amidst the ongoing pandemic and the rise of AI chatbots. The enhanced PageRank main path algorithm, developed in this study, demonstrates its effectiveness in identifying parallel research streams developing across different fields.

키워드

참고문헌

  1. Choi, Sanghee & Lee, Jae Yun (2020). A bibliometric analysis on research trends and multidisciplinarity of the journal of humanities. The Journal of Humanities, 41(3), 13-42. http://doi.org/10.22947/ihmju.2020.41.3.001 
  2. Han, Sang Woo (2020). A study on design of data literacy model based on digital humanities. Journal of the Korean Society for Information Management, 37(1), 179-195. http://doi.org/10.3743/KOSIM.2020.37.1.179 
  3. Jeong, Yoo Kyung (2020). An analysis on research trends of digital humanities. Journal of the Korean Society for Information Management, 37(2), 311-331. http://doi.org/10.3743/KOSIM.2020.37.2.311 
  4. Kim, Hea-Jin (2020). The main path analysis of korean studies using text mining: based on SCOPUS literature containing 'Korea' as a keyword. Journal of the Korean Society for Information Management, 37(3), 253-274. http://doi.org/10.3743/KOSIM.2020.37.3.253 
  5. Kim, Hye Young (2020). Analysis of data literacy in the core curriculum to improve students' 4C skills: communication, collaboration, critical thinking, and creativity. Korean Journal of General Education, 14(6), 147-159.  https://doi.org/10.46392/kjge.2020.14.6.147
  6. Kim, Jae Yeon (2023). We Need Different Data: Data that Makes Difference, Data that Creates Opportunity. Seoul: Sejong Books. 
  7. Kim, Ji Hyun (2018). A content analysis of research data management training programs at the university libraries in North America: focusing on data literacy competencies. Journal of the Korean Society for Information Management, 35(4), 7-36. http://doi.org/10.3743/KOSIM.2018.35.4.007 
  8. Kim, Seulki & Kim, Taeyoung (2021). A study of the definition and components of data literacy for K-12 AI education. Journal of the Korean Association of information Education, 25(5), 691-704. http://doi.org/10.14352/jkaie.2021.25.5.691 
  9. Lee, Jae Yun & Choi, Sanghee (2015). Discipline bias of document citation impact indicators: analyzing articles in Korean citation index. Journal of the Korean Society for Information Management, 32(4), 205-221. http://doi.org/10.3743/KOSIM.2015.32.4.205 
  10. Lee, Jae Yun & Chung, EunKyung (2022). Introducing keyword bibliographic coupling analysis (KBCA) for identifying the intellectual structure. Journal of the Korean Society for Information Management, 39(1), 309-330. http://doi.org/10.3743/KOSIM.2022.39.1.309 
  11. Lee, Jae Yun (2006). A novel clustering method for examining and analyzing the intellectual structure of a scholarly field. Journal of the Korean Society for Information Management, 23(4), 215-231. https://doi.org/10.3743/KOSIM.2006.23.4.215 
  12. Lee, Jae Yun (2013). A comparison study on the weighted network centrality measures of tnet and WNET. Journal of the Korean Society for Information Management, 30(4), 241-264. http://doi.org/10.3743/KOSIM.2013.30.4.241 
  13. Lee, Jae Yun (2020a). A new perspective on constructing data literacy sub-competencies. Proceedings of the 27th Annual Conference of the Korean Society for Information Management, 165-175. Available: https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002707039 
  14. Lee, Jae Yun (2020b). Analyzing the Intellectual structure of school library researches with citation-weighted author profiling. Journal of the Korean Society for Library and Information Science, 54(2), 197-223. http://doi.org/10.4275/KSLIS.2020.54.2.197 
  15. Lee, Jae Yun (2021). Considering some of the decision criteria in the intellectual structure analysis process. Proceedings of the 28th Annual Conference of the Korean Society for Information Management, 91-100. Available: https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002755669 
  16. Lee, Jae Yun (n.d.). BACA (ver. 0.1.1) [Computer software]. 
  17. Lee, Jae Yun, Kim, Pan Jun, Kang, DaeShin, Kim Hee jung, Yu, So-Young, & Lee, Woo-Hyoung (2011). A bibliometric analysis on LED research. Journal of Information Management, 42(3), 1-26. https://doi.org/10.1633/JIM.2011.42.3.001 
  18. Lee, Jeong-Mee (2019). Re-approach to the concept of data literacy and its application to library information services. Journal of the Korean Society for Library and Information Science, 53(1), 159-179. http://doi.org/10.4275/KSLIS.2019.53.1.159 
  19. Lee, Woo-Hyoung, Seok, Yeong-Cheol, & Park, Jun-Cheul (2012). Detecting emerging technology to use social network analysis: focusing on mobile telecommunication. The Journal of Information Systems, 21(4), 109-132. https://doi.org/10.5859/KAIS.2012.21.4.109 
  20. Yoo, Yeong Jun & Lee, Jae Yun (2020). A bibliometric study on the KCI listed theological journals. Journal of the Korean Biblia Society for Library and Information Science, 31(3), 5-27. http://doi.org/10.14699/kbiblia.2020.31.3.005
  21. Amodio, P. & Brugnano, L. (2014). Recent advances in bibliometric indexes and the paperrank problem. Journal of Computational and Applied Mathematics, 267, 182-194. https://doi.org/10.1016/j.cam.2014.02.018 
  22. Batagelj, V. (2003). Efficient Algorithms for Citation Network Analysis. CoRR cs.DL/0309023. Available: http://arxiv.org/abs/cs.DL/0309023 
  23. Coughlan, T. (2020). The use of open data as a material for learning. Educational Technology Research and Development, 68(1), 383-411. https://doi.org/10.1007/s11423-019-09706-y 
  24. De Nooy, W., Mrvar, A., & Batagelj, V. (2018). Exploratory Social Network Analysis with Pajek: Revised and Expanded Edition for Updated Software. Cambridge University Press. 
  25. Gray, J., Gerlitz, C., & Bounegru, L. (2018). Data infrastructure literacy. Big Data & Society, 5(2). https://doi.org/10.1177/2053951718786316 
  26. Hummon, N. P. & Dereian, P. (1989). Connectivity in a citation network: the development of DNA theory. Social Networks, 11(1), 39-63. http://doi.org/10.1016/0378-8733(89)90017-8 
  27. Kang, I., Choung, J. Y., Kang, D., & Park, I. (2021). Divergence of knowledge production strategies for emerging technologies between late industrialized countries: focusing on quantum technology. ETRI Journal, 43(2), 246-259. http://doi.org/10.4218/etrij.2019-0501 
  28. Knight, S., Matuk, C., & DesPortes, K. (2022). Guest editorial: learning at the intersection of data literacy and social justice. Educational Technology & Society, 25(4), 70-79. Available: http://hdl.handle.net/10453/163405  10453/163405
  29. Koltay, T. (2015). Data literacy: in search of a name and identity. Journal of Documentation, 71(2), 401-415. https://doi.org/10.1108/JD-02-2014-0026 
  30. Liu, J. S. & Lu, L. Y. (2012). An integrated approach for main path analysis: development of the hirsch index as an example. Journal of the American Society for Information Science and Technology, 63(3), 528-542. http://doi.org/10.1002/asi.21692 
  31. Mandinach, E. B. & Gummer, E. S. (2013). A systemic view of implementing data literacy in educator preparation. Educational Researcher, 42(1), 30-37. https://doi.org/10.3102/0013189X12459803 
  32. Mandinach, E. B., Friedman, J. M., & Gummer, E. S. (2015). How can schools of education help to build educators' capacity to use data? a systemic view of the issue. Teachers College Record, 117(4), 1-50. https://doi.org/10.1177/016146811511700404 
  33. Marjanovic, U., Taibi, D., Cabral, P., Urbsiene, L., Kasaj, A., & Marques, S. M. (2022). Digital transformation missing ingredients: data literacy. In: Lalic, B., Gracanin, D., Tasic, N., Simeunovic, N. (eds) Proceedings on 18th international conference on industrial systems (IS 2020), 340-344. https://doi.org/10.1007/978-3-030-97947-8_45 
  34. Page, L. (1999). The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab. 
  35. Prado, J. C. & Marzal, M. A. (2013). Incorporating data literacy into information literacy programs: core competencies and contents. Libri, 63(2), 123-134. https://doi.org/10.1515/libri-2013-0010 
  36. Sander, I. (2020). What is critical big data literacy and how can it be implemented?. Internet Policy Review, 9(2). https://doi.org/10.14763/2020.2.1479 
  37. Schvaneveldt, R. W. (ed). (1990). Pathfinder Associative Networks: Studies in Knowledge Organization. Norwood, New Jersey: Ablex. 
  38. Yu, D. & Sheng, L. (2021). Influence difference main path analysis: evidence from DNA and blockchain domain citation networks. Journal of Informetrics, 15(4), 101186. https://doi.org/10.1016/j.joi.2021.101186