DOI QR코드

DOI QR Code

국내 어업활동보호구역 주요 어종의 종분포 변화 예측

Prediction of Species Distribution Changes for Key Fish Species in Fishing Activity Protected Areas in Korea

  • 석형주 (해양생태기술연구소 위해성평가실) ;
  • 이창헌 (해양생태기술연구소 해양공간연구소) ;
  • 황철희 (해양생태기술연구소 사업 총괄 본부) ;
  • 김영윤 (해양생태기술연구소 R&D 총괄 본부) ;
  • 김대선 (한국해양과학기술원 해양법.정책연구소) ;
  • 이문숙 (한국해양과학기술원 해양법.정책연구소)
  • Hyeong Ju Seok (Risk Assessment Team, Marine Eco-technology Institute (MEI)) ;
  • Chang Hun Lee (Marine Spatial Research Institute, Marine Eco-technology Institute (MEI)) ;
  • Choul-Hee Hwang (Business Headquarters, Marine Eco-technology Institute (MEI)) ;
  • Young Ryun Kim (Research and Development Headquarters, Marine Eco-technology Institute (MEI)) ;
  • Daesun Kim (Ocean Law and Policy Institute, Korea Institute of Ocean Science and Technology(KIOST)) ;
  • Moon Suk Lee (Ocean Policy Research Center, Korea Institute of Ocean Science and Technology(KIOST))
  • 투고 : 2023.11.27
  • 심사 : 2023.12.29
  • 발행 : 2023.12.31

초록

해양공간계획(Marine spatial planning)은 해양의 합리적인 이용과 지속 가능한 해양 공간 활용을 위한 중요한 요소이다. 특히 어업활동 보호구역은 지속 가능한 어업을 위한 핵심 용도구역으로, 해양공간계획 경계 내에서 약 45.6%를 차지한다. 그러나, 현재 어업활동보호구역의 지정과 평가는 미래 수요와 잠재적 가치를 충분히 반영하지 못하고 있으며, 중장기 계획 수립을 위한 보다 합리적인 평가 방법과 예측 도구가 필요한 상황이다. 이러한 문제를 해결하기 위해, 본 연구는 어업활동보호구역 내 주요 어종인 고등어, 갈치, 멸치, 참조기를 대상으로 어종 분포 예측을 시도하고, 현재 용도구역과의 비교를 통해 예측 도구의 가능성을 평가하였다. 한편, IPCC 6차 기후변화 시나리오(SSP1-2.6 및 SSP5-8.5)를 적용한 종분포 모델(MaxEnt)을 사용하여 미래 기후변화에 따른 어종의 이동 및 분포 변화를 분석한 결과, 고등어, 갈치, 참조기의 분포 면적은 현재보다 약 28~86% 증가했으나, 멸치의 분포 면적은 약 6~11% 감소했다. 이 결과를 바탕으로 주요 4종의 종풍부도 지도를 작성하였으며, 해양공간계획 경계 내에서 '높음'으로 평가된 종풍부도 해역과 어업활동보호구역이 중복되는 비율은 약 15%, SSP1-2.6 시나리오에서 21%, SSP5-8.5 시나리오에서 34%로 증가하였다. 연구 결과는 향후 용도구역 평가나 유보구역 변경 시 과학적 근거로 활용될 수 있으며, 어종의 현재 종분포와 기후변화에 따른 분포 예측을 통해 현재 용도구역 평가의 한계를 보완하고, 지속 가능한 유용 해양 자원의 이용을 위한 계획 수립에 기여할 것으로 판단된다.

Marine spatial planning (MSP) is a crucial element for rational allocation and sustainable use of marine areas. Particularly, Fishing Activity Protected Areas constitute essential zones accounting for 45.6% designated for sustainable fishing activities. However, the current assessment of these zones does not adequately consider future demands and potential values, necessitating appropriate evaluation methods and predictive tools for long-term planning. In this study, we selected key fish species (Scomber japonicus, Trichiurus lepturus, Engraulis japonicus, and Larimichthys polyactis) within the Fishing Activity Protected Area to predict their distribution and compare it with the current designated zones for evaluating the ability of the prediction tool. Employing the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report scenarios (SSP1-2.6 and SSP5-8.5), we used species distribution models (such as MaxEnt) to assess the movement and distribution changes of these species owing to future variations. The results indicated a 30-50% increase in the distribution area of S. japonicus, T. lepturus, and L. polyactis, whereas the distribution area of E. japonicus decreased by approximately 6-11%. Based on these results, a species richness map for the four key species was created. Within the marine spatial planning boundaries, the overlap between areas rated "high" in species richness and the Fishing Activity Protected Area was approximately 15%, increasing to 21% under the RCP 2.6 scenario and 34% under the RCP 8.5 scenario. These findings can serve as scientific evidence for future evaluations of use zones or changes in reserve areas. The current and predicted distributions of species owing to climate change can address the limitations of current use zone evaluations and contribute to the development of plans for sustainable and beneficial use of marine resources.

키워드

과제정보

이 논문은 2023년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구이다(20220431, 해양공간 정책시뮬레이터 기술 개발).

참고문헌

  1. Bang, M., D. Sohn, J. J. Kim, W. Choi, C. J. Jang, and C. Kim(2022), Future changes in the seasonal habitat suitability for anchovy (Engraulis japonicus) in Korean waters projected by a maximum entropy model, Frontiers in Marine Science, 9(922020), p. 16.
  2. Bae, E. and J. Jung(2015), Prediction of shift in fish distributions in the Geum River Watershed under climate change. Ecology and Resilient Infrastructure, 2(3), pp. 198-205. https://doi.org/10.17820/eri.2015.2.3.198
  3. Barbet-Massin, M., F. Jiguet, C. H. Albert, and W. Thuiller (2012), Selecting pseudo absences for species distribution models: How, where and how many?, Methods in ecology and evolution, 3(2), pp. 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
  4. Cury, P. and C. Roy(1989), Optimal environmental window and pelagic fish recruitment success in upwelling areas, Can. J. Fish. Aquat. Sci., 46(4), pp. 670-680. https://doi.org/10.1139/f89-086
  5. Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, ... and N. E. Zimmermann(2006), Novel methods improve prediction of species' distributions from occurrence data, Ecography, 29(2), pp. 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  6. Guisan, A. and W. Thuiller(2005), Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), pp. 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
  7. Han, J. R., T. H. Kim, E. Y. Choi, and H. W. Choi(2021), A Study on the Mapping of Fishing Activity using V-Pass Data-Focusing on the Southeast Sea of Korea, Journal of the Korean Association of Geographic Information Studies, 24(1), pp. 112-125. https://doi.org/10.11108/KAGIS.2021.24.1.112
  8. Hwang, S. D., G. A. McFarlane, O. I. Choi, J. S. Kim, and H. J. Hwang(2007), Spatiotemporal distribution of pacific anchovy (Engraulis japonicus) eggs in the West Sea of Korea, Fish. Aquat. Sci., 10(2), pp. 74-85.
  9. IPCC(2022), Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report: Technicla Summary, Intergovernmental Panel on Climate Change, p. 118.
  10. Jung, K. M., S. Kang, H. K. Cha, K. H. Choi, and M. S. Myksvoll(2013), Buoyancy and vertical distribution of mackerel Scomber japonicus eggs in Korean waters, Korean Journal of Fisheries and Aquatic Sciences, 46(6), pp. 957-965. https://doi.org/10.5657/KFAS.2013.0957
  11. Kang, J. H., Y. G. Kim, J. Y. Park, J. K. Kim, J. H. Ryu, C. B. Kang, and J. H. Park(2014a), Comparison of fish species composition collected by set net at Hupo in Gyeong-SangBuk-Do, and Jangho in Gang-Won-Do, Korea, Korean Journal of Fisheries and Aquatic Sciences, 47(4), pp. 424-430. https://doi.org/10.5657/KFAS.2014.0424
  12. Kang, M., S. G. Choi, and B. K. Hwang(2014b), Acoustic characteristics of Anchovy schools, and visualization of their connection with water temperature and salinity in the Southwestern Sea and the Westsouthern Sea of South Korea, Journal of the Korean Society of Fisheries and Ocean Technology, 50(1), pp. 39-49. https://doi.org/10.3796/KSFT.2014.50.1.039
  13. Kim, D., J. Shim, and S. Yoo(2006), Seasonal variations in nutrients and chlorophyll-a concentrations in the northern East China Sea, Ocean. Sci. J., 41(3), pp. 125-137. https://doi.org/10.1007/BF03022418
  14. Kim, Y. H., J. T. Yoo, E. H. Lee, T. Y. Oh, and D. W. Lee(2011), Age and growth of largehead hairtail Trichiurus lepturus in the East China Sea, Korean Journal of Fisheries and Aquatic Sciences, 44(6), pp. 695-700. https://doi.org/10.5657/KFAS.2011.0695
  15. Kim, J. Y., J. B. Lee, and Y. S. Suh(2020), Oceanographic indicators for the occurrence of anchovy eggs inferred from generalized additive models, Fisheries and Aquatic Sciences, 23(1), pp. 1-14. https://doi.org/10.1186/s41240-020-0147-y
  16. Kim, S. R., J. J. Kim, H. W. Park, S. Kang, H. K. Cha, and H. J. Baek(2010), Maturity and spawning of the chub mackerel Scomber japonicus in the Korean waters, Korean Journal of Fisheries and Aquatic Sciences, 53(1), pp. 9-18.
  17. KMA(2022), Climate change around the Korean Peninsula, Korea Meteorological Administration, p. 2.
  18. Ko, J. C., Y. I. Seo, H. Y. Kim, S. K. Lee, H. K. Cha, and J. I. Kim(2010), Distribution characteristics of eggs and larvae of the anchovy Engraulis japonica in the yeosu and tongyeong coastal waters of Korea, Korean. J. Ichthyol., 22(4), pp. 256-266.
  19. Kwon, H., J. E. Ryu, C. Seo, J. Kim, D. O. Lim, and M. H. Suh(2012), A study on distribution characteristics of corylopsis coreana using SDM. Journal of environmental impact assessment, 21(5), pp. 735-743. https://doi.org/10.14249/EIA.2012.21.5.735
  20. Lee, C. I., L. H. Jang, and S. E. Park(2009), Influence of water temperature during the main spawning period on anchovy catch, Korean Journal of Fisheries and Aquatic Sciences, 42(3), pp. 297-301. https://doi.org/10.5657/kfas.2009.42.3.297
  21. Lin, L. S., J. H. Cheng, Y. Z. Jiang, X. W. Yuan, J. S. Li, and T. X. Gao(2008), Spatial distribution and environmental characteristics of the spawning grounds of small yellow croaker in the southern Yellow Sea and the East China Sea, Acta Ecologica Sinica, 28(8), pp. 3485-3494.
  22. Merow, C., M. J. Smith, and J. A. Silander Jr(2013), A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter, Ecography, 36(10), pp. 1058-1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
  23. Morales-Castilla, I., T. J. Davies, W. D. Pearse, and P. Peres-Neto(2017), Combining phylogeny and co-occurrence to improve single species distribution models, Glob. Ecol. Biogeogr, 26(6), pp. 740-752. https://doi.org/10.1111/geb.12580
  24. Muscarella, R., P. J. Galante, M. Soley-Guardia, R. A. Boria, J. M. Kass, and M. Uriarte(2014), ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models, Methods Ecol. Evol., 5(11), pp. 1198-1205. https://doi.org/10.1111/2041-210X.12261
  25. O'Banion, M. S. and M. J. Olsen(2014), Predictive seismicallyinduced landslide hazard mapping in oregon using a maximum entropy model (MaxEnt), In Proceedings of the 10th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, Anchorage, AK: Earthquake Engineering Research Institute.
  26. Oh, H. J. and Y. S. Suh(2006), Temporal and spatial characteristics of chlorophyll a distributions related to the oceanographic conditions in the Korean waters, J. Korean. Assoc. Geogr. Inf. Stud., 9(3), pp. 36-45.
  27. Park, I. S. and J. S. Oh(2020), Comparison of morphometric traits between small yellow croaker (Larimichthys polyactis) and yellow croaker (L. crocea), Korean Journal of Environmental Biology, 38(4), pp. 507-517. https://doi.org/10.11626/KJEB.2020.38.4.507
  28. Park, J. H., Y. J. Lim, H. K. Cha, and Y. S. Suh(2004), The relationship between oceanographic and fishing conditions for anchovy, Engraulis japonica, in the southern Sea of Korea. J. Korean. Soc. Fish. Res., 6(2), pp. 46-53.
  29. Park, J. U., T. Lee, D. G. Kim, and S. Shin(2020), Prediction of potential habitats and distribution of the marine invasive sea squirt, Herdmania momus, Korean Journal of Environmental Biology, 38(1), pp. 179-188. https://doi.org/10.11626/KJEB.2020.38.1.179
  30. Phillips, S. J.(2017), A brief tutorial on maxent, p. 39.
  31. Phillips, S. J. and M. Dudik(2008), Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, 31(2), pp. 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  32. Rose, G. A., B. DeYoung, D. W. Kulka, S. V. Goddard, and G. L. Fletcher(2000), Distribution shifts and overfishing the northern cod (Gadus morhua): a view from the ocean, Canadian Journal of Fisheries and Aquatic Sciences, 57(3), pp. 644-663. https://doi.org/10.1139/f00-004
  33. Shojima, E. and H. Otaki(1982), Lunar rhythmic catch fluctuation in the yellow croaker, Pseudosciaena polyactis, Bull. Fish. Res. Dev. Agency, 28, pp. 147-166.
  34. Swets, J. A.(1988), Measuring the accuracy of diagnostic systems, Science, 240(4857), pp. 1285-1293. https://doi.org/10.1126/science.3287615
  35. Walther, G. R., E. Post, P. Convey, A. Menzel, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein (2002), Ecological responses to recent climate change, Nature, 416(6879), pp. 389-395. https://doi.org/10.1038/416389a
  36. Yamada, K., J. Ishizaka, S. Yoo, H. C. Kim, and S. Chiba (2004), Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES), Prog. Oceanogr., 61(2-4), pp. 193-211.  https://doi.org/10.1016/j.pocean.2004.06.001