Acknowledgement
The research of the corresponding author is supported by a grant from Ferdowsi University of Mashhad (N2.59254)
References
- Abediokhchi, J., Kouchakzadeh, M.A. and Shakouri, M. (2013), "Buckling analysis of cross-ply laminated conical panels using GDQ method", Compos. Part B Eng., 55, 440-446. https://doi.org/10.1016/j.compositesb.2013.07.003.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6, 39-55. https://doi.org/10.12989/anr.2018.6.1.039
- Al-shujairi, M. and Mollamahmutoglu, C. (2018), "Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103.
- Babaei, H. (2022), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math. Comput., 413. https://doi.org/10.1016/j.amc.2021.126606.
- Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibration analysis of shear deformable FGM shallow arches on nonlinear elastic foundation", Thin. Wall. Struct., 144, 106237. https://doi.org/10.1016/j.tws.2019.106237.
- Batihan, A.C . and Kadioglu, F.S. (2016), "Vibration analysis of a cracked beam on an elastic foundation", Int. J. Struct. Stabil. Dyn., 16. https://doi.org/10.1142/S0219455415500066.
- Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351. https://doi.org/10.12989/anr.2019.7.5.351.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71. https://doi.org/10.12989/sem.2019.71.2.185
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
- Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111.
- Deng, H., Chen, k., Cheng, W. and Zhao, S. (2017), "Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation", Compos. Struct., 160, 152-168. https://doi.org/10.1016/j.compstruct.2016.10.027.
- Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composite sandwich beams in thermal environmen", Adv. Aircr. Spacecr. Sci., 5. https://doi.org/10.12989/aas.2018.5.1.107
- Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83. https://doi.org/10.12989/anr.2020.8.1.083.
- Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5, 141-169. https://doi.org/10.12989/anr.2017.5.2.141
- Eiadtrong, S., Wattanasakulpong, N. and Vo, T.P. (2023), "Thermal vibration of functionally graded porous beams with classical and non-classical boundary conditions using a modified Fourier method", Acta Mech., 234, 729-750. https://doi.org/10.1007/s00707-022-03401-5.
- Elimat, Z.M., Zihlif, A.M. and Avella, M. (2008), "Thermal and optical properties of poly(methyl methacrylate)/calcium carbonate nanocomposite", J. Experim. Nanosci., 3(4), 259-269. https://doi.org/10.1080/17458080802603715.
- Fariborz, J. and Batra, R.C. (2019), "Free vibration of bidirectional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius", Compos. Struct., 210, 217-230. https://doi.org/10.1016/j.compstruct.2018.11.036.
- Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effec", Adv. Aircr. Spacecr. Sci., 7. https://doi.org/10.12989/aas.2020.7.2.169.
- Ghandehari, M.A., Masoodi, A.R. and Panda, S.K. (2023), "Thermal frequency analysis of double CNT-reinforced polymeric straight beam", J. Vib. Eng. Technol., 1-17. https://doi.org/10.1007/s42417-023-00865-0.
- Ghasemi, A.R. and Mohande, M. (2016), "The effect of finite strain on the nonlinear free vibration of a unidirectional composite Timoshenko beam using GDQ", Adv. Aircr. Spacecr. Sci., 3(4), 379. https://doi.org/10.12989/aas.2016.3.4.379.
- Gholami, R. and Ansari, R. (2018), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019.
- Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theo", Adv. Nano Res., 10(3), 281. https://doi.org/10.12989/anr.2021.10.3.281
- Hamada, T.R., Nakayama, H. and Hayashi, K. (1983), "Free and forced vibrations of elastically connected double-beam systems", Bull. JSME, 26(221), 1936-1942. https://doi.org/10.1299/jsme1958.26.1936.
- Han, Z. and Fina, A. (2011), "Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review", Prog. Polym. Sci., 36(7), 914-944. https://doi.org/10.1016/j.progpolymsci.2010.11.004.
- Hosseini, S.A.H., Rahmani, O., Refaeinejad, V., Golmohammadi, H. and Montazeripour, M. (2023), "Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity", Adv. Aircr. Spacecr. Sci., 10. https://doi.org/10.12989/aas.2023.10.1.051
- Javani, M., Kiani, Y. and Eslami, M.R. (2021), "Application of generalized differential quadrature element method to free vibration of FG-GPLRC T-shaped plates", Eng. Struct., 242, 112510. https://doi.org/10.1016/j.engstruct.2021.112510.
- Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: An analytical approach", Eur. Phys. J. Plus, 135(2), 164. https://doi.org/10.1140/epjp/s13360-020-00176-3.
- Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings", Compos. Part B Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023.
- Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
- Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032.
- Li, Z., Xu, Y. and Huang, D. (2021), "Analytical solution for vibration of functionally graded beams with variable cross-sections resting on Pasternak elastic foundations", Int. J. Mech. Sci., 191, 106084. https://doi.org/10.1016/j.ijmecsci.2020.106084.
- MaraS, S. and SEnsoy, A.T. (2023), "Estimating the effect of certain manufacturing parameters for fiber laminated composites: A validated DQM model integrated with RSM", Eng. Anal. Bound. Elem., 155, 169-181. https://doi.org/10.1016/j.enganabound.2023.06.007.
- Maras, S. and Yaman, M. (2022), "Free vibration analysis of fiber-metal laminated composite plates using differential, generalized and harmonic quadrature methods: experimental and numerical studies", Eng. Comput., 39(6), 2326-2349. https://doi.org/10.1108/EC-08-2021-0490.
- Maras, S. and Yaman, M. (2023), "Investigation of dynamic properties of GLARE and CARALL hybrid composites: Numerical and experimental results", Eng. Anal. Bound. Elem., 155, 484-499. https://doi.org/10.1016/j.enganabound.2023.06.026.
- Maras, S., Yaman, M., Sansveren, M.F. and Reyhan, S.K. (2018), "Free vibration analysis of fiber metal laminated straight beam", Open Chem., 16(1), 944-948. https://doi.org/10.1515/chem-2018-0101.
- Oniszczuk, Z. (2000), "Free transverse vibration of elastically connected simply supported double-beam complex system", J. Sound Vib., 232(2), 387-403. https://doi.org/10.1006/jsvi.1999.2744.
- Ramteke, P.M. and Panda, S.K. (2023), "Computational modelling and experimental challenges of linear and nonlinear analysis of porous graded structure: A comprehensive review", Arch. Comput. Methods Eng., 30(5), 3437-3452. https://doi.org/10.1007/s11831-023-09908-x.
- Rao, S.S. (1974), "Natural vibrations of systems of elastically connected Timoshenko beams", J. Acoust. Soc. Am., 55(6). https://doi.org/10.1121/1.1914690.
- Rezaiee-Pajand, M. and Rajabzadeh-Safaei, N. (2016), "Static and dynamic analysis of circular beams using explicit stiffness matrix", Struct. Eng. Mech., 60. https://doi.org/10.12989/sem.2016.60.1.111.
- Rezaiee-Pajand, M. and Masoodi, A.R. (2019), " Analyzing FG shells with large deformations and finite rotations", World J. Eng., 16(5) 636-647. https://doi.org/10.1108/WJE-10-2018-0357.
- Roberts, A.P. and Garboczi, E.J. (2002), "Computation of the linear elastic properties of random porous materials with a wide variety of microstructure", Proceedings of the Royal Society A, 458. https://doi.org/10.1098/rspa.2001.0900.
- Sahmani, S. and Safaei, B. (2022), "Nonlinear three-dimensional oscillations of probabilistic reinforced nanocomposite shells at microscale via modified strain gradient meshfree formulations", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 09544062221142144. https://doi.org/10.1177/09544062221142144.
- Salehi Kolahi, M.R., Moeinkhah, H. and Rahmani, H. (2021), "Numerical study of the non-linear vibrations of electrically actuated curved micro-beams considering thermoelastic damping", Commun. Nonlinear Sci. Numer. Simul., 103, 106009. https://doi.org/10.1016/j.cnsns.2021.106009.
- Seelig, J. and Hoppmann, I. (1963), Impact on an Elastically Connected Double Beam System, Rensselaer Polytechnic Inst Troy, New York, U.S.A.
- Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56. https://doi.org/10.1016/j.engstruct.2013.06.002.
- Shu (1991), Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation, University of Glasgow
- Shu (2000), Differential Quadrature and Its Application in Engineering, Springer, Berlin.
- Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nano-composites paraboloidal and hyperboloidal shells based on multiscale approaches", Aerosp. Sci. Technol., 119, 107111. https://doi.org/10.1016/j.ast.2021.107111.
- Sobhani, E. and Masoodi, A.R. (2023), "Differential quadrature technique for frequencies of the coupled circular arch-arch beam bridge system", Mech. Adv. Mater. Struct., 30(4), 770-781. https://doi.org/10.1080/15376494.2021.2023920.
- Song, Z.G., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments", Int. J. Mech. Sci., 115-116, 339-347. https://doi.org/10.1016/j.ijmecsci.2016.06.020.
- Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of two-directionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.
- Tang, Y. and Ding, Q. (2019), "Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads", Compos. Struct., 225, 111076. https://doi.org/10.1016/j.compstruct.2019.111076.
- Tlidji, Y., Benferhat, R., Trinh, L.C., Tahar, H.D. and Abdelouahed, T. (2021), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditio", Adv. Nano Res., 11(4), 347. https://doi.org/10.12989/anr.2021.11.4.347.
- Tornabene, F. and Dimitri, R. (2018), "A numerical study of the seismic response of arched and vaulted structures made of isotropic or composite materials", Eng. Struct., 159, 332-366. https://doi.org/10.1016/j.engstruct.2017.12.042.
- Vu, H.V., Ordonez, A.M. and Karnopp, B.H. (2000), "Vibration of a double-beam system", J. Sound Vib., 229(4), 807-822. https://doi.org/10.1006/jsvi.1999.2528.
- Xiaobin, L.I., Shuangxi, X.U., Weiguo, W.U. and Jun, L.I. (2014), "An exact dynamic stiffness matrix for axially loaded double-beam systems", Sadhana, 39(3), 607-623. https://doi.org/10.1007/s12046-013-0214-5.
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012.
- Yu, C., Shi, L., Yao, Z., Li, D. and Majumdar, A. (2005), "Thermal conductance and thermopower of an individual single-wall carbon nanotube", Nano Lett., 5(9), 1842-1846. https://doi.org/10.1021/nl051044e.
- Zhang, P., Schiavone, P. and Qing, H. (2022), "Stress-driven local/nonlocal mixture model for buckling and free vibration of FG sandwich Timoshenko beams resting on a nonlocal elastic foundation", Compos. Struct., 289, 115473. https://doi.org/10.1016/j.compstruct.2022.115473.
- Zhao, X., Chen, B., Li, Y.H., Zhu, W.D., Nkiegaing, F.J. and Shao, Y.B. (2020), "Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions", J. Sound Vib., 464, 115001. https://doi.org/10.1016/j.jsv.2019.115001.