DOI QR코드

DOI QR Code

Employing GDQ method for exploring undamped vibrational performance of CNT-reinforced porous coupled curved beam

  • Moein A. Ghandehari (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Amir R. Masoodi (Department of Civil Engineering, Ferdowsi University of Mashhad)
  • Received : 2023.05.18
  • Accepted : 2023.09.13
  • Published : 2023.12.25

Abstract

Coupled porous curved beams, due to their low weight and high flexibility, have many applications in engineering. This study investigates the vibration behavior of coupled porous curved beams in different boundary conditions. The system consists of two curved beams connected by a mid-layer of elastic springs. These beams are made of various materials, such as homogenous steel foam, and composite materials with PMMA (polymethyl methacrylate) and SWCNT (single-walled carbon nanotube) used as the matrix and nanofillers, respectively. To obtain equivalent material properties, the role of mixture (RoM) was employed, followed by the implementation of the porosity function. The system's governing equations were obtained by employing FSDT and Hamilton's law. To investigate thermal vibration, temperature was implemented as a load in the governing equations. The GDQ method was used to solve these equations. To demonstrate the applicability of the GDQ method in calculating the frequencies of the system and the correctness of the developed program, a validation study was conducted. After validation, numerous examples were presented to investigate the behavior of single and coupled curved beams in various material properties and boundary conditions. The results indicate that the frequencies of the curved beams and the system depend highly on the amount of porosity (n) and the distribution pattern. The system frequencies decreased with an increase in the porosity coefficient. The stiffness of the springs had no effect on the first mode frequency but increased frequencies of other modes in a specific range. The frequencies of the system decreased with an increase in environmental temperature.

Keywords

Acknowledgement

The research of the corresponding author is supported by a grant from Ferdowsi University of Mashhad (N2.59254)

References

  1. Abediokhchi, J., Kouchakzadeh, M.A. and Shakouri, M. (2013), "Buckling analysis of cross-ply laminated conical panels using GDQ method", Compos. Part B Eng., 55, 440-446. https://doi.org/10.1016/j.compositesb.2013.07.003. 
  2. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6, 39-55. https://doi.org/10.12989/anr.2018.6.1.039 
  3. Al-shujairi, M. and Mollamahmutoglu, C. (2018), "Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect", Compos. Part B Eng., 154, 292-312. https://doi.org/10.1016/j.compositesb.2018.08.103. 
  4. Babaei, H. (2022), "Free vibration and snap-through instability of FG-CNTRC shallow arches supported on nonlinear elastic foundation", Appl. Math. Comput., 413. https://doi.org/10.1016/j.amc.2021.126606. 
  5. Babaei, H., Kiani, Y. and Eslami, M.R. (2019), "Large amplitude free vibration analysis of shear deformable FGM shallow arches on nonlinear elastic foundation", Thin. Wall. Struct., 144, 106237. https://doi.org/10.1016/j.tws.2019.106237. 
  6. Batihan, A.C . and Kadioglu, F.S. (2016), "Vibration analysis of a cracked beam on an elastic foundation", Int. J. Struct. Stabil. Dyn., 16. https://doi.org/10.1142/S0219455415500066. 
  7. Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351. https://doi.org/10.12989/anr.2019.7.5.351. 
  8. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71. https://doi.org/10.12989/sem.2019.71.2.185 
  9. Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108-109, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025. 
  10. Chen, Y., Jin, G., Zhang, C., Ye, T. and Xue, Y. (2018), "Thermal vibration of FGM beams with general boundary conditions using a higher-order shear deformation theory", Compos. Part B Eng., 153, 376-386. https://doi.org/10.1016/j.compositesb.2018.08.111. 
  11. Deng, H., Chen, k., Cheng, W. and Zhao, S. (2017), "Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation", Compos. Struct., 160, 152-168. https://doi.org/10.1016/j.compstruct.2016.10.027. 
  12. Ebrahimi, F. and Farazmandnia, N. (2018), "Vibration analysis of functionally graded carbon nanotube reinforced composite sandwich beams in thermal environmen", Adv. Aircr. Spacecr. Sci., 5. https://doi.org/10.12989/aas.2018.5.1.107 
  13. Ebrahimi, F., Jafari, A. and Selvamani, R. (2020), "Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment", Adv. Nano Res., 8(1), 83. https://doi.org/10.12989/anr.2020.8.1.083. 
  14. Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5, 141-169. https://doi.org/10.12989/anr.2017.5.2.141 
  15. Eiadtrong, S., Wattanasakulpong, N. and Vo, T.P. (2023), "Thermal vibration of functionally graded porous beams with classical and non-classical boundary conditions using a modified Fourier method", Acta Mech., 234, 729-750. https://doi.org/10.1007/s00707-022-03401-5. 
  16. Elimat, Z.M., Zihlif, A.M. and Avella, M. (2008), "Thermal and optical properties of poly(methyl methacrylate)/calcium carbonate nanocomposite", J. Experim. Nanosci., 3(4), 259-269. https://doi.org/10.1080/17458080802603715. 
  17. Fariborz, J. and Batra, R.C. (2019), "Free vibration of bidirectional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius", Compos. Struct., 210, 217-230. https://doi.org/10.1016/j.compstruct.2018.11.036. 
  18. Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effec", Adv. Aircr. Spacecr. Sci., 7. https://doi.org/10.12989/aas.2020.7.2.169. 
  19. Ghandehari, M.A., Masoodi, A.R. and Panda, S.K. (2023), "Thermal frequency analysis of double CNT-reinforced polymeric straight beam", J. Vib. Eng. Technol., 1-17. https://doi.org/10.1007/s42417-023-00865-0. 
  20. Ghasemi, A.R. and Mohande, M. (2016), "The effect of finite strain on the nonlinear free vibration of a unidirectional composite Timoshenko beam using GDQ", Adv. Aircr. Spacecr. Sci., 3(4), 379. https://doi.org/10.12989/aas.2016.3.4.379. 
  21. Gholami, R. and Ansari, R. (2018), "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019. 
  22. Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theo", Adv. Nano Res., 10(3), 281. https://doi.org/10.12989/anr.2021.10.3.281 
  23. Hamada, T.R., Nakayama, H. and Hayashi, K. (1983), "Free and forced vibrations of elastically connected double-beam systems", Bull. JSME, 26(221), 1936-1942. https://doi.org/10.1299/jsme1958.26.1936. 
  24. Han, Z. and Fina, A. (2011), "Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review", Prog. Polym. Sci., 36(7), 914-944. https://doi.org/10.1016/j.progpolymsci.2010.11.004. 
  25. Hosseini, S.A.H., Rahmani, O., Refaeinejad, V., Golmohammadi, H. and Montazeripour, M. (2023), "Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity", Adv. Aircr. Spacecr. Sci., 10. https://doi.org/10.12989/aas.2023.10.1.051 
  26. Javani, M., Kiani, Y. and Eslami, M.R. (2021), "Application of generalized differential quadrature element method to free vibration of FG-GPLRC T-shaped plates", Eng. Struct., 242, 112510. https://doi.org/10.1016/j.engstruct.2021.112510. 
  27. Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: An analytical approach", Eur. Phys. J. Plus, 135(2), 164. https://doi.org/10.1140/epjp/s13360-020-00176-3. 
  28. Jouneghani, F.Z., Dimitri, R. and Tornabene, F. (2018), "Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings", Compos. Part B Eng., 152, 71-78. https://doi.org/10.1016/j.compositesb.2018.06.023. 
  29. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061. 
  30. Li, X., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032. 
  31. Li, Z., Xu, Y. and Huang, D. (2021), "Analytical solution for vibration of functionally graded beams with variable cross-sections resting on Pasternak elastic foundations", Int. J. Mech. Sci., 191, 106084. https://doi.org/10.1016/j.ijmecsci.2020.106084. 
  32. MaraS, S. and SEnsoy, A.T. (2023), "Estimating the effect of certain manufacturing parameters for fiber laminated composites: A validated DQM model integrated with RSM", Eng. Anal. Bound. Elem., 155, 169-181. https://doi.org/10.1016/j.enganabound.2023.06.007. 
  33. Maras, S. and Yaman, M. (2022), "Free vibration analysis of fiber-metal laminated composite plates using differential, generalized and harmonic quadrature methods: experimental and numerical studies", Eng. Comput., 39(6), 2326-2349. https://doi.org/10.1108/EC-08-2021-0490. 
  34. Maras, S. and Yaman, M. (2023), "Investigation of dynamic properties of GLARE and CARALL hybrid composites: Numerical and experimental results", Eng. Anal. Bound. Elem., 155, 484-499. https://doi.org/10.1016/j.enganabound.2023.06.026. 
  35. Maras, S., Yaman, M., Sansveren, M.F. and Reyhan, S.K. (2018), "Free vibration analysis of fiber metal laminated straight beam", Open Chem., 16(1), 944-948. https://doi.org/10.1515/chem-2018-0101. 
  36. Oniszczuk, Z. (2000), "Free transverse vibration of elastically connected simply supported double-beam complex system", J. Sound Vib., 232(2), 387-403. https://doi.org/10.1006/jsvi.1999.2744. 
  37. Ramteke, P.M. and Panda, S.K. (2023), "Computational modelling and experimental challenges of linear and nonlinear analysis of porous graded structure: A comprehensive review", Arch. Comput. Methods Eng., 30(5), 3437-3452. https://doi.org/10.1007/s11831-023-09908-x. 
  38. Rao, S.S. (1974), "Natural vibrations of systems of elastically connected Timoshenko beams", J. Acoust. Soc. Am., 55(6). https://doi.org/10.1121/1.1914690. 
  39. Rezaiee-Pajand, M. and Rajabzadeh-Safaei, N. (2016), "Static and dynamic analysis of circular beams using explicit stiffness matrix", Struct. Eng. Mech., 60. https://doi.org/10.12989/sem.2016.60.1.111. 
  40. Rezaiee-Pajand, M. and Masoodi, A.R. (2019), " Analyzing FG shells with large deformations and finite rotations", World J. Eng., 16(5) 636-647. https://doi.org/10.1108/WJE-10-2018-0357. 
  41. Roberts, A.P. and Garboczi, E.J. (2002), "Computation of the linear elastic properties of random porous materials with a wide variety of microstructure", Proceedings of the Royal Society A, 458. https://doi.org/10.1098/rspa.2001.0900. 
  42. Sahmani, S. and Safaei, B. (2022), "Nonlinear three-dimensional oscillations of probabilistic reinforced nanocomposite shells at microscale via modified strain gradient meshfree formulations", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 09544062221142144. https://doi.org/10.1177/09544062221142144. 
  43. Salehi Kolahi, M.R., Moeinkhah, H. and Rahmani, H. (2021), "Numerical study of the non-linear vibrations of electrically actuated curved micro-beams considering thermoelastic damping", Commun. Nonlinear Sci. Numer. Simul., 103, 106009. https://doi.org/10.1016/j.cnsns.2021.106009. 
  44. Seelig, J. and Hoppmann, I. (1963), Impact on an Elastically Connected Double Beam System, Rensselaer Polytechnic Inst Troy, New York, U.S.A. 
  45. Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56. https://doi.org/10.1016/j.engstruct.2013.06.002. 
  46. Shu (1991), Generalized differential-integral quadrature and application to the simulation of incompressible viscous flows including parallel computation, University of Glasgow 
  47. Shu (2000), Differential Quadrature and Its Application in Engineering, Springer, Berlin. 
  48. Sobhani, E. and Masoodi, A.R. (2021), "Natural frequency responses of hybrid polymer/carbon fiber/FG-GNP nano-composites paraboloidal and hyperboloidal shells based on multiscale approaches", Aerosp. Sci. Technol., 119, 107111. https://doi.org/10.1016/j.ast.2021.107111. 
  49. Sobhani, E. and Masoodi, A.R. (2023), "Differential quadrature technique for frequencies of the coupled circular arch-arch beam bridge system", Mech. Adv. Mater. Struct., 30(4), 770-781. https://doi.org/10.1080/15376494.2021.2023920. 
  50. Song, Z.G., Zhang, L.W. and Liew, K.M. (2016), "Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments", Int. J. Mech. Sci., 115-116, 339-347. https://doi.org/10.1016/j.ijmecsci.2016.06.020. 
  51. Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of two-directionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045. 
  52. Tang, Y. and Ding, Q. (2019), "Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads", Compos. Struct., 225, 111076. https://doi.org/10.1016/j.compstruct.2019.111076. 
  53. Tlidji, Y., Benferhat, R., Trinh, L.C., Tahar, H.D. and Abdelouahed, T. (2021), "New state-space approach to dynamic analysis of porous FG beam under different boundary conditio", Adv. Nano Res., 11(4), 347. https://doi.org/10.12989/anr.2021.11.4.347. 
  54. Tornabene, F. and Dimitri, R. (2018), "A numerical study of the seismic response of arched and vaulted structures made of isotropic or composite materials", Eng. Struct., 159, 332-366. https://doi.org/10.1016/j.engstruct.2017.12.042. 
  55. Vu, H.V., Ordonez, A.M. and Karnopp, B.H. (2000), "Vibration of a double-beam system", J. Sound Vib., 229(4), 807-822. https://doi.org/10.1006/jsvi.1999.2528. 
  56. Xiaobin, L.I., Shuangxi, X.U., Weiguo, W.U. and Jun, L.I. (2014), "An exact dynamic stiffness matrix for axially loaded double-beam systems", Sadhana, 39(3), 607-623. https://doi.org/10.1007/s12046-013-0214-5. 
  57. Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Pres. Ves. Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012. 
  58. Yu, C., Shi, L., Yao, Z., Li, D. and Majumdar, A. (2005), "Thermal conductance and thermopower of an individual single-wall carbon nanotube", Nano Lett., 5(9), 1842-1846. https://doi.org/10.1021/nl051044e. 
  59. Zhang, P., Schiavone, P. and Qing, H. (2022), "Stress-driven local/nonlocal mixture model for buckling and free vibration of FG sandwich Timoshenko beams resting on a nonlocal elastic foundation", Compos. Struct., 289, 115473. https://doi.org/10.1016/j.compstruct.2022.115473. 
  60. Zhao, X., Chen, B., Li, Y.H., Zhu, W.D., Nkiegaing, F.J. and Shao, Y.B. (2020), "Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green's functions", J. Sound Vib., 464, 115001. https://doi.org/10.1016/j.jsv.2019.115001.