DOI QR코드

DOI QR Code

Investigating the role of nano in preserving the environment with new energy and preventing oil pollution

  • Yong Huang (State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University) ;
  • Lei Zhang (Xiamen Innovation Research Institute)
  • Received : 2023.05.24
  • Accepted : 2023.07.23
  • Published : 2023.12.25

Abstract

The escalating growth of industrial sectors has led to a pervasive global problem—oil pollution, particularly in industrial areas. The release of substantial volumes of oil and its by-products into the environment has resulted in extensive contamination. Multiple factors contribute to the entry of these substances into water bodies and soils, thereby inflicting irreparable consequences on ecosystems, natural resources, and human health. Consequently, it becomes imperative to comprehend the characteristics and behavior of oil pollution, anticipate its impacts, and develop effective mitigation strategies. Understanding this intricate issue requires considering the physicochemical properties of the environment, the interactions between oil and sediments, and biological factors such as evaporation and dissolution. Although the oil industry has brought about remarkable advancements, its activities have raised significant concerns regarding pollution from extraction and production processes. Oil-rich nations face a particularly challenging predicament of soil pollution caused by petroleum compounds. The areas surrounding oil exploration mines and refineries often endure contamination due to oil leakages from storage tanks and transmission lines resulting from deterioration and damage. Investigating the dispersion of such pollutants and devising methods to remediate petroleum-contaminated soil represent crucial and intricate issues within the realm of environmental geotechnics.

Keywords

Acknowledgement

This work was supported by the Natural science foundation of Xinjiang Uygur Autonomous Region (general project, No.2021D01A68), Sino-Ukrainian Science and Technology Exchange Project (CU03-32), Project of Xinjiang Science and Technology Department Project (2018E02075).

References

  1. Acter, T., Uddin, N., Cho, E., Riches, E., Giustie, P., Afonso, C. and Kim, S. (2022), "Ion mobility mass spectrometry for structural elucidation of petroleum compounds", TrAC Trend. Anal. Chem., 151, 116597. https://doi.org/10.1016/j.trac.2022.116597.
  2. Cao, C., Wang, J., Kwok, D., Cui, F., Zhang, Z., Zhao, D., Li, M.J. and Zou, Q. (2022), "webTWAS: A resource for disease candidate susceptibility genes identified by transcriptome-wide association study", Nucl. Acids Res., 50(D1), D1123-D1130. https://doi.org/10.1093/nar/gkab957.
  3. Cao, Y., Xu, N., Wang, H., Zhao, X. and Ahmad, A.M. (2023), "Neural networks-based adaptive tracking control for full-state constrained switched nonlinear systems with periodic disturbances and actuator saturation", Int. J. Syst. Sci., 54(14), 2689-2704. https://doi.org/10.1080/00207721.2023.2241959.
  4. Cazcarro, I., Villamayor-Tomas, S., Lobera, M.P., Murria, J. and Bernechea, M. (2023), "Networks of action situations in pointsource pollution: the case of winery wastewater in Aragon, Spain", Sust. Sci., 18(1), 201-218. https://doi.org/10.1007/s11625-022-01273-1.
  5. Cui, W., Li, X., Duan, W., Xie, M. and Dong, X. (2023), "Heavy metal stabilization remediation in polluted soils with stabilizing materials: a review", Environ. Geochem. Health., 1-37. https://doi.org/10.1007/s10653-023-01522-x.
  6. Dan, M., Ishizawa, Y., Tanaka, S., Nakahara, S., Wakayama, S. and Kohiyama, M. (2015), "Vibration characteristics change of a base-isolated building with semi-active dampers before, during, and after the 2011 Great East Japan earthquake", Earthq. Struct., 8(4), 889-913. https://doi.org/10.12989/eas.2015.8.4.889.
  7. Dehghanbanadaki, A., Rashid, A.S.A., Ahmad, K., Yunus, N.Z.M. and Said, K.N.M. (2022), "A computational estimation model for the subgrade reaction modulus of soil improved with DCM columns", Geomech. Eng., 28(4), 385. https://doi.org/10.12989/gae.2022.28.4.385.
  8. Esparham, A., Moradikhou Amir, B., Andalib Faeze, K. and Avanaki Mohammad, J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Adv. Concr. Constr., 11(3), 219-229. https://doi.org/10.12989/ACC.2021.11.3.219.
  9. Falandysz, J., Nnorom, I.C. and Medyk, M. (2022), "Rare earth elements in boletus edulis (King Bolete) mushrooms from lowland and montane areas in Poland", Int. J. Environ. Res. Publ. Health, 19(15), 8948. https://doi.org/10.3390/ijerph19158948
  10. Faussone, G.C. and Cecchi, T. (2022), "Chemical recycling of plastic marine litter: First analytical characterization of the pyrolysis oil and of its fractions and comparison with a commercial marine gasoil", Sustainability, 14(3), 1235. https://doi.org/10.3390/su14031235.
  11. Gaur, V.K., Tripathi, V. and Manickam, N. (2022), Chapter 18 - Bacterial- and Fungal-Mediated Biodegradation of Petroleum Hydrocarbons in Soil, Elsevier.
  12. Gautam, K., Sharma, P., Dwivedi, S., Singh, A., Gaur, V.K., Varjani, S., Srivastava, J.K., Pandey, A., Chang, J.S. and Ngo, H.H. (2023), "A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil", Environ. Res., 225, 115592. https://doi.org/10.1016/j.envres.2023.115592.
  13. Gavrilescu, M. (2022), "Enhancing phytoremediation of soils polluted with heavy metals", Curr. Op. Biotechnol., 74, 21-31. https://doi.org/10.1016/j.copbio.2021.10.024.
  14. Guo, J., Lin, W., Li, H., Zhang, Z. and Qin, X. (2023), "Numerical simulation study on spatial diffusion behavior of non-point source fugitive dust under different enclosure heights", Int. J. Environ. Res. Publ. Health, 20(5), 4361. https://doi.org/10.3390/ijerph20054361
  15. Guo, X., Liu, Y. and Wang, G. (2021), "Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization", Adv. Nano Res., 11(2), 203-218. https://doi.org/10.12989/anr.2021.11.2.203.
  16. Hasnain, M., Munir, N., Abideen, Z., Zulfiqar, F., Koyro, H.W., El-Naggar, A., Cacador, I., Duarte, B., Rinklebe, J. and Yong, J.W.H. (2023), "Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural resilience: A critical review", Ecotoxicol. Environ. Safe., 249, 114408. https://doi.org/10.1016/j.ecoenv.2022.114408.
  17. He, M.Y., Dong, J.B., Jin, Z., Liu, C.Y., Xiao, J., Zhang, F., Sun, H., Zhao, Z.Q., Gou, L.F., Liu, W.G., Luo, C.G., Song, Y.G., Ma, L. and Deng, L. (2021), "Pedogenic processes in loess-paleosol sediments: Clues from Li isotopes of leachate in Luochuan loess", Geochimica et Cosmochimica Acta, 299, 151-162. https://doi.org/10.1016/j.gca.2021.02.021.
  18. Hussain, A., Rehman, F., Rafeeq, H., Waqas, M., Asghar, A., Afsheen, N., Rahdar, A., Bilal, M. and Iqbal, H.M.N. (2022a), "In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review", Chemosphere, 289, 133252. https://doi.org/10.1016/j.chemosphere.2021.133252.
  19. Hussain, I., Ganiyu, S.A., Alasiri, H. and Alhooshani, K. (2022b), "A state-of-the-art review on waste plastics-derived aviation fuel: Unveiling the heterogeneous catalytic systems and techno-economy feasibility of catalytic pyrolysis", Energy Convers. Manag., 274, 116433. https://doi.org/10.1016/j.enconman.2022.116433.
  20. Ibrahim, R.K., Hayyan, M., AlSaadi, M.A., Hayyan, A. and Ibrahim, S. (2016), "Environmental application of nanotechnology: Air, soil, and water", Environ. Sci. Pollut. Res., 23(14), 13754-13788. https://doi.org/10.1007/s11356-016-6457-z.
  21. Jabbar, N.M., Alardhi, S.M., Mohammed, A.K., Salih, I.K. and Albayati, T.M. (2022), "Challenges in the implementation of bioremediation processes in petroleum-contaminated soils: A review", Environ. Nanotechnol. Monit. Manag., 18, 100694. https://doi.org/10.1016/j.enmm.2022.100694.
  22. Jew, A.D., Druhan, J.L., Ihme, M., Kovscek, A.R., Battiato, I., Kaszuba, J.P., Bargar, J.R. and Brown, G.E., Jr. (2022), "Chemical and reactive transport processes associated with hydraulic fracturing of unconventional oil/gas shales", Chem. Rev., 122(9), 9198-9263. https://doi.org/10.1021/acs.chemrev.1c00504.
  23. Jiang, Z. and Xu, C. (2023), "Policy incentives, government subsidies, and technological innovation in new energy vehicle enterprises: Evidence from China", Energy Policy, 177, 113527. https://doi.org/10.1016/j.enpol.2023.113527.
  24. Jing, L., El-Houjeiri, H.M., Monfort, J.C., Littlefield, J., Al-Qahtani, A., Dixit, Y., Speth, R.L., Brandt, A.R., Masnadi, M.S., MacLean, H.L., Peltier, W., Gordon, D. and Bergerson, J.A. (2022), "Understanding variability in petroleum jet fuel life cycle greenhouse gas emissions to inform aviation decarbonization", Nature Commun., 13(1), 7853. https://doi.org/10.1038/s41467-022-35392-1.
  25. Khademi, F., Samaei, M.R., Shahsavani, A., Azizi, K., Mohammadpour, A., Derakhshan, Z., Giannakis, S., Rodriguez-Chueca, J. and Bilal, M. (2022), "Investigation of the presence volatile organic compounds (BTEX) in the ambient air and biogases produced by a shiraz landfill in southern Iran", Sustainability, 14(2), 1040. https://doi.org/10.3390/su14021040
  26. Li, X., Wang, F., Al-Razgan, M., Mahrous Awwad, E., Zilola Abduvaxitovna, S., Li, Z. and Li, J. (2023), "Race to environmental sustainability: Can structural change, economic expansion and natural resource consumption effect environmental sustainability? A novel dynamic ARDL simulations approach", Resources Policy, 86, 104044. https://doi.org/10.1016/j.resourpol.2023.104044.
  27. Liu, D., Yao, Z., Yang, X., Xiong, C. and Nie, Q. (2023), Research Progress and Trend of Agricultural Non-Point Source Pollution from Non-Irrigated Farming Based on Bibliometrics,
  28. Liu, W., Huang, F., Liao, Y., Zhang, J., Ren, G., Zhuang, Z., Zhen, J., Lin, Z. and Wang, C. (2008), "Treatment of CrVI-containing Mg (OH) 2 nanowaste", Angewandte Chemie, 120(30), 5701-5704. https://doi.org/10.1002/ange.200800172.
  29. Luhar, S., Luhar, I. and Shaikh, F.U. (2022), A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties,
  30. Lv, J.Q., Ying, X.G., Zhang, Y.L., Liu, B., Yang, X.J. and Li, X. (2022), "Investigation of degradation characteristics of complex petroleum hydrocarbons by Bacillus cereus LY-1", Chem. Papers, 76(11), 6753-6765. https://doi.org/10.1007/s11696-022-02352-4.
  31. Ma, J., Qiu, Y., Zhao, J., Ouyang, X., Zhao, Y., Weng, L., Md Yasir, A., Chen, Y. and Li, Y. (2022), "Effect of agricultural organic inputs on nanoplastics transport in saturated goethite-coated porous media: particle size selectivity and role of dissolved organic matter", Environ. Sci. Technol., 56(6), 3524-3534. https://doi.org/10.1021/acs.est.1c07574.
  32. Ma, Y., Shao, F., Wang, J., Yang, H. and Yue, C. (2023), "Examination of the structure and definition of the mechanism of formation of products by pyrolysis of tarim crude oil", Energies, 16(4), 2073. https://doi.org/10.3390/en16042073
  33. Mamalis, A.G., Vogtlander, L.O.G. and Markopoulos, A. (2004), "Nanotechnology and nanostructured materials: trends in carbon nanotubes", Precis. Eng., 28(1), 16-30. https://doi.org/10.1016/j.precisioneng.2002.11.002.
  34. Maqsood, Q., Sumrin, A., Waseem, R., Hussain, M., Imtiaz, M. and Hussain, N. (2023), "Bioengineered microbial strains for detoxification of toxic environmental pollutants", Environ. Res., 227, 115665. https://doi.org/10.1016/j.envres.2023.115665.
  35. Mekki, M., Hemsas, M., Zoutat, M. and Elachachi, S.M. (2022), "Effects of soil-structure interaction and variability of soil properties on seismic performance of reinforced concrete structures", Earthq. Struct., 22(3), 219-230. https://doi.org/10.12989/eas.2022.22.3.219.
  36. Mohammadi, A., Ebadi, T. and Boroomand, M.R. (2020), "Interface shear between different oil-contaminated sand and construction materials", Geomech. Eng., 20(4), 299. https://doi.org/10.12989/gae.2020.20.4.299.
  37. Mohammadian, E., Dastgerdi, M.E., Manshad, A.K., Mohammadi, A.H., Liu, B., Iglauer, S. and Keshavarz, A. (2022), "Application of underbalanced tubing conveyed perforation in horizontal wells: A case study of perforation optimization in a giant oil field in Southwest Iran", Adv. Geo Energy Res., 6(4), 296-305. https://doi.org/10.46690/ager.2022.04.04.
  38. Mozaffari, S., Baird, Z.S. and Jarvik, O. (2022), "Sulfur in kukersite shale oil: its distribution in shale oil fractions and the effect of gaseous environment", J. Therm. Anal. Calorim., 147(20), 11601-11610. https://doi.org/10.1007/s10973-022-11359-8.
  39. Nong, J., Peng, P., Pan, J., Shen, T. and Xie, Q. (2023), "Effect of bioaugmentation and biostimulation on hydrocarbon degradation and bacterial community composition in different petroleum-contaminated soil layers", Water Air Soil Pollut., 234(3), 189. https://doi.org/10.1007/s11270-023-06161-7.
  40. Oumedour, A. and Lazzali, F. (2022), "Modifier parameters and quantifications for seismic vulnerability assessment of reinforced concrete buildings", Earthq. Struct., 22(1), 83-94. https://doi.org/10.12989/eas.2022.22.1.083.
  41. Padalia, K., Bargali, S.S., Bargali, K. and Manral, V. (2022), "Soil microbial biomass phosphorus under different land use systems of Central Himalaya", Trop. Ecol., 63(1), 30-48. https://doi.org/10.1007/s42965-021-00184-z.
  42. Ponce, A.A. and Klabunde, K.J. (2005), "Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis", J. Mol. Catal. A Chem., 225(1), 1-6. https://doi.org/10.1016/j.molcata.2004.08.019.
  43. Raimi, M.O., Iyingiala, A.A., Sawyerr, O.H., Saliu, A.O., Ebuete, A.W., Emberru, R.E., Sanchez, N.D. and Osungbemiro, W.B. (2022), Leaving No One Behind: Impact of Soil Pollution on Biodiversity in the Global South: A Global Call for Action, Springer Nature Singapore, Singapore.
  44. Sarkar, S., Gill, S.S., Das Gupta, G. and Kumar Verma, S. (2022), "Water toxicants: a comprehension on their health concerns, detection, and remediation", Environ. Sci. Pollut. Res., 29(36), 53934-53953. https://doi.org/10.1007/s11356-022-20384-x.
  45. Shakouri, A., Amiri, G.G., Miri, Z.S. and Lak, H.R. (2021), "Seismic poundings of multi-story buildings isolated by TFPB against moat walls", Earthq. Struct., 20(3), 295-307. https://doi.org/10.12989/eas.2021.20.3.295.
  46. Shang, M. and Luo, J. (2021), "The tapio decoupling principle and key strategies for changing factors of chinese urban carbon footprint based on cloud computing", Int. J. Environ. Res. Publ. Health, 18(4), 2101. https://doi.org/10.3390/ijerph18042101
  47. Shi, J., Zhao, D., Ren, F. and Huang, L. (2023), "Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment", Sci. Total Environ., 871, 161768. https://doi.org/10.1016/j.scitotenv.2023.161768.
  48. Srivastava, R., Kumar, Y., Banerjee, S. and Kale, S.N. (2022), "Real-time transformer oil monitoring using planar frequency-based sensor", Sensors Actuat. A Phys., 347, 113892. https://doi.org/10.1016/j.sna.2022.113892.
  49. Tian, Y., Jiang, B., Chen, J., Zhan, Z.W., Yang, C., Zou, Y.R. and Peng, P.A. (2022), "Characterisation by ESI FT-ICR MS of heteroatomic compounds in catalytic hydropyrolysates released from marine crude oil asphaltenes", Organic Geochem., 167, 104391. https://doi.org/10.1016/j.orggeochem.2022.104391.
  50. Turkeli, E., Karaca, Z. and Ozturk, H.T. (2017), "On the wind and earthquake response of reinforced concrete chimneys", Earthq. Struct., 12(5), 559-567. https://doi.org/10.12989/eas.2017.12.5.559.
  51. Ugurlu, O.F. and Ozturk, C.A. (2021), "Experimental investigation for the use of tailings as paste-fill material through design of experiment", Geomech. Eng., 26(5), 465. https://doi.org/10.12989/gae.2021.26.5.465.
  52. Wang, T., Zhou, G., Wang, J. and Wang, D. (2020), "Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline", Geomech. Eng., 20(1), 19. https://doi.org/10.12989/gae.2020.20.1.019.
  53. Wang, H., Zandi, Y., Gholizadeh, M. and Issakhov, A. (2021), "Buckling of porosity-dependent bi-directional FG nanotube using numerical method", Adv. Nano Res., 10(5), 493-507. https://doi.org/10.12989/anr.2021.10.5.493.
  54. Wang, M., Yang, T. and Liao, Y. (2023a), "Activation of persulfate oxidation by pyrolytic derivatives from petroleum contaminated soil: Efficiency, mechanism and resources utilization", Water, Air Soil Pollut., 234(3), 190. https://doi.org/10.1007/s11270-023-06202-1.
  55. Wang, Y., Jia, Q. and Deng, T. (2023b), "The role of nanotechnology in reducing the impact on the ball and increasing the speed of its movement", Geomech. Eng., 32(5), 463-474. https://doi.org/10.12989/gae.2023.32.5.463.
  56. Wang, T., Zhang, L., Xu, N. and Alharbi, K.H. (2023c), "Adaptive critic learning for approximate optimal event-triggered tracking control of nonlinear systems with prescribed performances", Int. J. Control, 1-15. https://doi.org/10.1080/00207179.2023.2250880.
  57. Wu, M., Ba, Z. and Liang, J. (2022), "A procedure for 3D simulation of seismic wave propagation considering source-path-site effects: Theory, verification and application", Earthq. Eng. Struct. Dyn., 51(12), 2925-2955. https://doi.org/10.1002/eqe.3708.
  58. Xu, J., Chen, F., Shi, Q., Luo, S. and Liu, C. (2022), "Fast biodegradation of long-chain alkanes in heavily polluted soil by improving C/H conversion after pre-oxidation", Biochem. Eng. J., 186, 108594. https://doi.org/10.1016/j.bej.2022.108594.
  59. Xue, W., Ying, D., Li, Y., Sheng, Y., He, T., Shi, P., Liu, M. and Zhao, L. (2023), "Method for establishing soil contaminant discharge inventory: An arsenic-contaminated site case study", Environ. Res., 227, 115700. https://doi.org/10.1016/j.envres.2023.115700.
  60. Yang, L., Wang, H., Xu, H., Guo, D. and Li, M. (2023), "Experimental study on characteristics of water imbibition and ion diffusion in shale reservoirs", Geoenergy Sci. Eng., 229, 212167. https://doi.org/10.1016/j.geoen.2023.212167.
  61. Yuan, J., Wang, T.J., Chen, J. and Huang, J.A. (2023), "Microscopic mechanism study of the creep properties of soil based on the energy scale method", Front. Mater., 10. https://doi.org/10.3389/fmats.2023.1137728.
  62. Yunus, I.S., Harwin, Kurniawan, A., Adityawarman, D. and Indarto, A. (2012), "Nanotechnologies in water and air pollution treatment", Environ. Technol. Rev., 1(1), 136-148. https://doi.org/10.1080/21622515.2012.733966.
  63. Yusaf, T., Faisal Mahamude, A.S., Kadirgama, K., Ramasamy, D., Farhana, K., Al Dhahad, H. and Abu Talib, A.B.D.R. (2023), "Sustainable hydrogen energy in aviation - A narrative review", Int. J. Hydrogen Energ., In Press. https://doi.org/10.1016/j.ijhydene.2023.02.086.
  64. Zhai, C.-H., Zheng, Z., Li, S. and Pan, X. (2018), "The capacity loss of a RCC building under mainshock-aftershock seismic sequences", Earthq. Struct., 15(3), 295. https://doi.org/10.12989/eas.2018.15.3.295.
  65. Zhang, H., Zou, Q., Ju, Y., Song, C. and Chen, D. (2022a), "Distance-based support vector machine to predict DNA N6-methyladenine modification", Curr. Bioinform., 17(5), 473-482. https://doi.org/10.2174/1574893617666220404145517.
  66. Zhang, M., Zheng, Y., Li, J., Liu, K., Wang, H., Gu, H., Zhang, Z. and Guo, X. (2023), "Distribution characteristics of microplastics in soil of Loess Plateau in northwest China and their relationship with land use type", Sci. Total Environ., 868, 161674. https://doi.org/10.1016/j.scitotenv.2023.161674.
  67. Zhang, S., Bai, X., Zhao, C., Tan, Q., Luo, G., Wang, J., Li, Q., Wu, L., Chen, F., Li, C., Deng, Y., Yang, Y. and Xi, H. (2021), "Global CO2 consumption by silicate rock chemical weathering: its past and future", Earth Future, 9(5), e2020EF001938. https://doi.org/10.1029/2020EF001938.
  68. Zhang, X., Chen, B., Yin, R., Xing, S., Fu, W., Wu, H., Hao, Z., Ma, Y. and Zhang, X. (2022b), "Long-term nickel contamination increased soil fungal diversity and altered fungal community structure and co-occurrence patterns in agricultural soils", J. Hazard. Mater., 436, 129113. https://doi.org/10.1016/j.jhazmat.2022.129113.
  69. Zhao, J., Sun, M., Pan, Z., Liu, B., Ostadhassan, M. and Hu, Q. (2022), "Effects of pore connectivity and water saturation on matrix permeability of deep gas shale", Adv. Geo Energy Res., 6(1), 54-68. https://doi.org/10.46690/ager.2022.01.05.
  70. Zhao, J. and Yu, Z. (2021), "On the modeling and simulation of the nonlinear dynamic response of NEMS via a couple of nonlocal strain gradient theory and classical beam theory", Adv. Nano Res., 11(5), 547-563. https://doi.org/10.12989/anr.2021.11.5.547.
  71. Zhao, Y., Dong, Y., Chen, X., Wang, Z., Cui, Z. and Ni, S.Q. (2023), "Using sulfide as nitrite oxidizing bacteria inhibitor for the successful coupling of partial nitrification-anammox and sulfur autotrophic denitrification in one reactor", Chem. Eng. J., 475, 146286. https://doi.org/10.1016/j.cej.2023.146286.
  72. Zhong, Y. and Liang, X. (2022), "Using CNN-VGG 16 to detect the tennis motion tracking by information entropy and unascertained measurement theory", Adv. Nano Res., 12(2), 223. https://doi.org/10.12989/anr.2022.12.2.223.
  73. Zhu, C., Gutierrez, O.Y., Santosa, D.M., Flake, M., Weindl, R., Kutnyakov, I., Shi, H. and Wang, H. (2022), "Kinetics of nitrogen-, oxygen- and sulfur-containing compounds hydrotreating during co-processing of bio-crude with petroleum stream", Appl. Catal. B Environ., 307, 121197. https://doi.org/10.1016/j.apcatb.2022.121197.