과제정보
This work was supported by Shahid Rajaee Teacher Training University under grant number 4951.
참고문헌
- Abedi D., Jaberipur Gh. and Sangsefidi M. (2015), "Coplanar Full adder in quantum-dot cellular automata via clock-zone-based crossover", IEEE T. Nanotechnol., 14(3), 497-504. https://doi.org/10.1109/TNANO.2015.2409117.
- Ahmad F. (2017), "An optimal design of QCA based 2n :1/1:2n multiplexer/demultiplexer and its efficient digital logic realization", Microproc. Microsyst., 56, 64-75. https://doi.org/10.1016/j.micpro.2017.10.010.
- Angizi S., Sarmadi S., Sayedsalehi S. and Navi K. (2015), "Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata", Microelectr. J., 46(1), 43-51. https://doi.org/10.1016/j.mejo.2014.10.003.
- Babaie S., Sadoghifar A. and Newaz Bahar A. (2019), "Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA)", IEEE T Circuits Syst. II, 66(6), 963-967. https://doi.org/10.1109/TCSII.2018.2873797.
- Bhanja S. and Sarkar S. (2006), "Probabilistic modeling of qca circuits using bayesian networks", IEEE T. Nanotechnol., 5(6), 657-670. https://doi.org/10.1109/TNANO.2006.883474.
- Campos, C.A.T., Marciano, A.L., Neto, O.P.V. and Torres, F.S. (2016), "Use: A universal, scalable, and efficient clocking scheme for QCA", IEEE T Comput. Aid. Des. Integr. Circ. Syst., 35(51), 3-7. https://doi.org/10.1109/TCAD.2015.2471996.
- Chuan M.W., Wong K.L., Hamzah A., Rusli S., Alias N.E., Lim C.S. and Tan M.L.P. (2021), "Device modelling and performance analysis of two-dimensional AlSi3 ballistic nano-transistor", Adv. Nano Res., 10(1), 91-99. https://doi.org/10.12989/anr.2021.10.1.091.
- Chuan M.W., Wong K.L., Hamzah A., Rusli S., Alias N.E., Lim C.S. and Tan M.L.P. (2020), "Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties", Adv. Nano Res., 9(2), 105-112. https://doi.org/10.12989/anr.2020.9.2.105.
- Chuan M.W., Wong Y.B., Hamzah A., Alias N.E., Mohamed Sultan S., Lim C.S. and Tan. M.L.P. (2022), "Electronic properties of monolayer silicon carbide nanoribbons using tight-binding approach", Adv. Nano Res., 12(2), 213-221. https://doi.org/10.12989/anr.2022.12.2.213.
- Das J.C. and De D. (2016a), "Shannon's expansion theorem-based multiplexer synthesis using QCA", Nanomater. Energy, 5(1), 53-60. https://doi.org/10.1680/jnaen.15.00008.
- Das J.C. and De D.D. (2016b), "Optimized multiplexer design and simulation using quantum dot-cellular automata", Indian J. Pure Appl. Phys. IJPAP, 54(12), 802-811. http://doi.org/10.56042/ijpap.v54i12.6108.
- Dehkordi M.A., Shamsabadi A.S., Ghahfarokhi B.S. and Vafaei A. (2011), "Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata", Microelectr. J., 42(5), 701-708. https://doi.org/10.1016/j.mejo.2011.02.006.
- Graunke C.R., Wheeler D.I., Tougaw D., and Will J.D. (2005), "Implementation of a crossbar network using quantum-dot cellular automata", IEEE T. Nanotechnol., 4(4), 435-440. https://doi.org/10.1109/TNANO.2005.851278.
- Hashemi, S. and Navi, K. (2012), "New robust QCA D flip flop and memory structures," Microelectr. J., 43(12), 929-940. https://doi.org/10.1016/j.mejo.2012.10.007.
- Heydari, M., Xiaohu, Z., Lai, K.K. and Afro, S. (2019), "A cost-aware efficient RAM structure based on quantum-dot cellular automata nanotechnology", Int. J. Theor. Phys., 58(4), 3961-3972. https://doi.org/10.1007/s10773-019-04261-x.
- Karl, E., Guo, Z., Conary, J., Miller, J., Ng, Y., Nalam, S., Kim, D., Keane, J., Wang, X., Bhattacharya, U. and Zhang, K. (2016), "A 0.6 V, 1.5 GHz 84 Mb SRAM in 14 nm FinFET CMOS technology with capacitive charge-sharing write assist circuitry", IEEE J. Solid State Circ., 51(1), 222-229. https://doi.org/10.1109/JSSC.2015.2461592.
- Khosroshahy, M.B., Moaiyeri, M.H., Navi, K. and Bagherzadeh, N. (2017), "An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata", Results Phys., 7, 3543-3551. https://doi.org/10.1016/j.rinp.2017.08.067.
- Kianpour, M. and Sabbaghi-Nadooshan, R. (2016), "A novel quantum-dot cellular automata X-bit × 32-bit SRAM", IEEE T VLSI Syst., 24(3), 827-836. https://doi.org/10.1109/TVLSI.2015.2418278.
- Liu W., Lu L., O'Neill M. and Swartzlander E.E. (2010), "Montgomery modular multiplier design in quantumdot cellular automata using cut-set retiming", Proceedings of the 10th IEEE Conference Nanotechnology (IEEE-NANO), U.S.A., August.
- Liu W., Lu L., O'Neill M. and Swartzlander EE. (2014), "A first step toward cost functions for quantum-dot cellular automata designs", IEEE T. Nanotechnol., 13(3), 476-487. https://doi.org/10.1109/TNANO.2014.2306754.
- Liu W., Lu L., O'Neill M., and Swartzlander E.E. (2011), "Design rules for quantum-dot cellular automata", Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, May.
- Liu W., Srivastava S., Lu L., O'Neill M. and Swartzlander E.E. (2012), "Are Q.C.A. cryptographic circuits resistant to power analysis attack?", IEEE T. Nanotechnol., 11(6), 1239-1251. https://doi.org/10.1109/TNANO.2012.2222663.
- Mead C. and Rem M. (1979), "Cost and performance of VLSI computing structures", IEEE T. Electr. Devices, 14(2), 455-462. https://doi.org/10.1109/JSSC.1979.1051197.
- Mubarakali, A., Ramakrishnan, J., Mavaluru, D., Elsir, A., Elsier, O. and Wakil, K. (2019), "A new efficient design for random access memory based on quantum dot cellular automata nanotechnology", Nano Commun. Networks, 21, 100252. https://doi.org/10.1016/j.nancom.2019.100252.
- Oh T., Jeong H., Kang K., Park J., Yang Y., and Jung S. (2017), "Power-gated 9T SRAM cell for low-energy operation", IEEE T VLSI Syst., 25(3), 1183-1187. https://doi.org/10.1109/TVLSI.2016.2623601.
- Orlov A., Amlani I., Bernstein G., Lent C. and Snider G. (1997), "Realization of a functional cell for quantum-dot cellular automata", Science, 277(5328), 928-930. https://doi.org/10.1126/science.277.5328.928.
- Perez-Martineza F., Farrer I., Anderson D., Jones G.A.C., Ritchie D.A., Chorley S.J. and Smith C.G. (2007), "Demonstration of a quantum cellular automata cell in a GaAs/AlGaAs heterostructure", Appl. Phys. Lett., 91(3), 032102. https://doi.org/10.1063/1.2759257.
- Pourreza T., Alijani A., Maleki V. A. and Kazemi A. (2021), "Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current", Adv. Nano Res., 10(5), 481-491. https://doi.org/10.12989/anr.2021.10.5.481.
- Pudi V. and Sridharan K. (2012), "New decomposition theorems on majority logic for low-delay adder designs in quantum dot cellular automata", IEEE T. Circ. Syst. II, 59(10), 678-682. https://doi.org/10.1109/TCSII.2012.2213356.
- Pulimeno A., Graziano M., Demarchi D. and Piccinini G. (2012), "Towards a molecular QCA wire: simulation of write-in and read-out systems", Solid State Electr., 77, 101-107. https://doi.org/10.1016/j.sse.2012.05.022.
- Sabbaghi-Nadooshan R. and Kianpour M. (2014), "A novel QCA implementation of MUX-based universal shift register", J. Comput. Electron. 13(1), 198-210. https://doi.org/10.1007/s10825-013-0500-9.
- Sergeyev D. (2021), "One-dimensional Schottky nanodiode based on telescoping polyprismanes", Adv. Nano Res., 10(4), 339-347. https://doi.org/10.12989/anr.2021.10.4.339.
- Shamsabadi A.S., Ghahfarokhi B.S., Zamanifar K. and Movahedinia N. (2009), "Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study", J. Syst. Arch., 55(3), 180-187. https://doi.org/10.1016/j.sysarc.2008.11.001.
- Shin C., Damrongplasit N., Sun X., Tsukamoto Y., Nikoli'c B., and Liu T.J.K. (2011), "Performance and yield benefits of quasi-planar bulk CMOS technology for 6-T SRAM at the 22-nm node", IEEE T. Electr. Devices, 58(7), 1846-1854. https://doi.org/10.1109/TED.2011.2139213.
- Smith C., Gardelis S., Rushforth A., Crook R., Cooper J., Ritchie D.A., Linfield, E.H., Jin, Y. and Peppe, M. (2003), "Realization of quantum-dot cellular automata using semiconductor quantum dots", Superlatt. Microstruct., 34(3-6), 195-203. https://doi.org/10.1016/j.spmi.2004.03.009.
- Song Z., Xie G., Cheng X., Wang L. and Zhang Y. (2020), "An ultra-low cost multilayer ram in quantum-dot cellular automata", IEEE T. Circ. Syst. II, 67(12), 3397-3401. https://doi.org/10.1109/TCSII.2020.2988046.
- Srivastava S., Asthana A., Bhanja S. and Sarkar S. (2011), "QCAPro-an error-power estimation tool for QCA circuit design", Proceedings of the IEEE international symposium on circuits and systems (ISCAS), Rio de Janeiro, Brazil, May.
- Thompson, C. (1980), "A complexity theory for VLSI", Ph.D. dissertation, Carnegie Mellon University, Pittsburgh.
- Timler J. and Lent C.S. (2002), "Power gain and dissipation in quantum dot cellular automata", J. Appl. Phys., 91, 823-830. https://doi.org/10.1063/1.1421217.
- Tougaw D. and Khatun M. (2013), "A scalable signal distribution network for quantum-dot cellular automata", IEEE T. Nanotechnol., 12(2), 215-224. https://doi.org/10.1109/TNANO.2013.2243162.
- Tougaw P. and Lent C. (1994), "Logical devices implemented using quantum cellular automata", J. Appl. Phys., 75(3), 1818-1825. https://doi.org/10.1063/1.356375.
- Vacca M., Graziano M. and Zamboni M. (2011), "Asynchronous solutions for nano-magnetic logic circuits", ACM J. Emerg. Technol. Comput. Syst., 7(4), 1-18. https://doi.org/10.1145/2043643.2043645.
- Vankamamidi V., Ottavi M. and Lombardi F. (2005), "A line-based parallel memory for QCA implementation", IEEE T. Nanotechnol., 4(6), 690-698. https://doi.org/10.1109/TNANO.2005.858589.
- Walus K., Dysart TJ., Jullien GA. and Budiman RA. (2004), "QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata", IEEE T. Nanotechnol., 3(1), 26-31. https://doi.org/10.1109/TNANO.2003.820815.
- Yang X., Cai L., Huang H. and Zhao X. (2012), "A comparative analysis and design of quantum-dot cellular automata memory cell architecture", Int. J. Circ. Theor. Appl., 40(1), 93-103. https://doi.org/10.1002/cta.710.
- Yang Y., Park J., Song S.C., Wang J., Yeap G. and Jung S. (2014), "Single-ended 9T SRAM cell for near-threshold voltage operation with enhanced read performance in 22-nm FinFET technology", IEEE T VLSI Syst., 23(11), 2748-2752. https://doi.org/10.1109/TVLSI.2014.2367234.