과제정보
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2021R1A6A1A03039493 and NRF-2022R1F1A1076089).
참고문헌
- ALamir, A.E. (2015), "Optimal control and design of composite laminated piezoelectric plates", Smart Struct. Syst., Int. J., 15(5), 1177-1202. https://doi.org/10.12989/sss.2015.15.5.1177
- Cao, Y., Zandi, Y., Gholizadeh, M., Fu, L., Du, J., Qian, X., Wang, Z., Roco-Videla, A., Selmi, A. and Issakhov, A. (2021), "Optimization algorithms for composite beam as smart active control of structures using genetic algorithms", Smart Struct. Syst., Int. J., 27(6), 1041-1052. https://doi.org/10.12989/sss.2021.27.6.1041
- Chee, C.Y., Tong, L. and Steven, G.P. (1999), "A mixed model for composite beams with piezoelectric actuators and sensors", Smart Mater. Struct., 8(3), 417-432. https://doi.org/10.1088/0964-1726/8/3/313
- Choi, S.B. and Hong, S.R. (2007), "Active vibration control of a flexible structure using an inertial type piezoelectric mount", Smart Mater. Struct., 16, 25-35. https://doi.org/10.1088/0964-1726/16/1/003
- Choi, S.B., Sohn, J.W., Han, Y.M. and Kim, J.W. (2008), "Dynamic characteristics of three-axis active mount featuring piezoelectric actuators", J. Intell. Mater. Syst. Struct., 19(9), 1053-1066. https://doi.org/10.1177/1045389X07083142
- Gao, Z., Huang, J., Miao, Z. and Zhu, X. (2020), "Multiple model switching adaptive control for vibration control of cantilever beam with varying load using MFC actuators and sensors", Smart Struct. Syst.., Int. J., 25(5), 559-567. https://doi.org/10.12989/sss.2020.25.5.559
- Garcia-Bonito, J., Brennan, M.J., Elliott, S.J., David, A. and Pinnington, R.J. (1998), "A novel high-displacement piezoelectric actuator for active vibration control", Smart Mater. Struct., 7, 31-42. https://doi.org/10.1088/0964-1726/7/1/005
- Han, Y.M. (2020), "Experimental Investigation on Vibration Control Performances of the Piezoelectric Hybrid Mount", J. Korea Converg. Soc., 11(11), 203-209. https://doi.org/10.15207/JKCS.2020.11.11.203
- Hillis, A.J., Harrison, A.J.L. and Stoten, D.P. (2005), "A comparison of two adaptive algorithms for the control of active engine mounts", J. Sound Vib., 286, 37-54. https://doi.org/10.1016/j.jsv.2004.09.023
- Hong, D. and Kim, B. (2019a), "Vibration reduction against modulated excitation using multichannel NLMS algorithm for a structure with three active paths between plates", J. Mech. Sci. Technol., 33(10), 4673-4680. https://doi.org/10.1007/s12206-019-0910-0
- Hong, D. and Kim, B. (2019b), "Quantification of Active Structural Path for Vibration Reduction Control of Plate Structure under Sinusoidal Excitation", Appl. Sci., 9(4), 711. https://doi.org/10.3390/app9040711
- Jang, D.D., Park, J. and Jung, H.J. (2015), "Experimental investigation of an active mass damper system with time delay control algorithm", Smart Struct. Syst., Int. J., 15(3), 863-879. https://doi.org/10.12989/sss.2015.15.3.863
- Jiang. J., Gao, W., Wang, L., Teng, Z. and Liu, Y. (2018), "Active vibration control based on modal controller considering structure-actuator interaction", J. Mech. Sci. Technol., 32(8), 3515-3521. https://doi.org/10.1007/s12206-018-0702-y
- Kim, B., Washington, G.N. and Singh, R. (2012a), "Control of incommensurate sinusoids using enhanced adaptive filtering algorithm based on sliding mode approach", J. Vib. Control, 19(8), 1265-1280. https://doi.org/10.1177/1077546312444659
- Kim, B., Washington, G.N. and Singh, R. (2012b), "Control of modulated vibration using an enhanced adaptive filtering algorithm based on model-based approach", J. Sound Vib., 331(18), 4101-4114. https://doi.org/10.1016/j.jsv.2012.04.007
- Kim, B., Washington, G.N. and Yoon, H.S. (2013), "Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control", Smart Struct. Syst., Int. J., 11(6), 623-635. https://doi.org/10.12989/sss.2013.11.6.623
- Lee, S.K., Lee, S., Back, J. and Shin, T. (2018), "A new method for active cancellation of engine order noise in a passenger car", Appl. Sci., 8(8), 1394. https://doi.org/10.3390/app8081394
- Liette, J., Dreyer, J.T. and Singh, R. (2014), "Interaction between two active structural paths for source mass motion control over mid-frequency range", J. Sound Vib., 333(9), 2369-2385. https://doi.org/10.1016/j.jsv.2013.12.002
- Lin, C.Y. and Jheng, H.W. (2017), "Active vibration suppression of a motor-driven piezoelectric smart structure using adaptive fuzzy sliding mode control and repetitive control", Appl. Sci., 7(3), 240. https://doi.org/10.3390/app7030240
- Lu, L.Y., Lin, G.L., Chen, Y.S. and Hsiao, K.A. (2020), "Vertical equipment isolation using piezoelectric inertial-type isolation system", Smart Struct. Syst., Int. J., 26(2), 195-211. https://doi.org/10.12989/sss.2020.26.2.195
- Malgaca, L. and Karagulle, H. (2009), "Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation", Smart Struct. Syst., Int. J., 5(1), 55-68. https://doi.org/10.12989/sss.2009.5.1.055
- Naseri, R., Talebi, H.A., Ohadi, A. and Fakhari, V. (2020), "A robust active control scheme for automotive engine vibration based on disturbance observer", ISA Transactions, 100, 13-27. https://doi.org/10.1016/j.isatra.2019.11.005
- Niu, W., Zou, C.Z., Li, B. and Wanga, W. (2019), "Adaptive vibration suppression of time-varying structures with enhanced FxLMS algorithm", Mech. Syst. Signal Process., 118, 93-107. https://doi.org/10.1016/j.ymssp.2018.08.009
- Shin, Y.H., Kim, T.Y. and Lee, J.H. (2019), "Development of Hybrid Vibration Isolator by Inertial-Type Actuator and Wire Mesh Mount", IEEE/ASME Transact. Mechatron., 24(3), 1356-1367. https://doi.org/10.1109/TMECH.2019.2906656
- Simonovic, A.M., Jovanovic, M.M., Lukic, N.S., Zoric, N.D., Stupar, S.N. and Ilic, S.S. (2016), "Experimental studies on active vibration control of smart plate using a modified PID controller with optimal orientation of piezoelectric actuator", J. Vib. Control, 22(11), 2619-2631. https://doi.org/10.1177/1077546314549037
- Sohn, J.W., Paeng, Y.S. and Choi, S.B. (2010), "An active mount using an electromagnetic actuator for vibration control: experimental investigation", J. Mech. Eng. Sci., 224(8), 1617-1625. https://doi.org/10.1243/09544062JMES1902
- Song, P. and Zhao, H. (2018), "Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control", Mech. Syst. Signal Process., 107, 93-104. https://doi.org/10.1016/j.ymssp.2018.01.035
- Vijayakumar, M.P., Ashwin, U. and Raja, S. (2014), "Active vibration control of engine mount system of transport aircraft using PZT stack actuators", J. Mechatron., 2, 226-231. https://doi.org/10.1166/jom.2014.1057
- Vivek, G., Manu, S. and Nagesh, T. (2011), "Mathematical modeling of actively controlled piezo smart structures: a review", Smart Struct. Syst., Int. J., 8(3), 275-302. https://doi.org/10.12989/sss.2011.8.3.275
- Xiong, S.L. and Shi, G. (2012), "Piezoelectric actuator design and application on active vibration control", Proceedings of 2012 International Conference on Solid State Devices and Materials Science, Macao, April.
- Zhao, Y. and Wang, X. (2019), "A review of low-frequency active vibration control of seat suspension systems", Appl. Sci., 9(16), 3326. https://doi.org/10.3390/app9163326