DOI QR코드

DOI QR Code

Load rating of box girder bridges based on rapid testing using moving loads

  • Hong Zhou (School of Civil Engineering, Dalian University of Technology) ;
  • Dong-Hui Yang (School of Civil Engineering, Dalian University of Technology) ;
  • Ting-Hua Yi (School of Civil Engineering, Dalian University of Technology) ;
  • Hong-Nan Li (School of Civil Engineering, Dalian University of Technology)
  • Received : 2023.02.20
  • Accepted : 2023.11.16
  • Published : 2023.12.25

Abstract

Box girder bridges are now widely used in bridge construction, and it is necessary to perform load rating regularly to evaluate the load capacity of box girder bridges. Load testing is a common measure for load rating. However, the bridge must be loaded by many trucks under different loading conditions, which is time-consuming and laborious. To solve this problem, this paper proposes a load rating method for box girder bridges based on rapid moving loads testing. The method includes three steps. First, the quasi-influence factors of the bridge are obtained by crossing the bridge with rapidly moving loads, and the structural modal parameters are simultaneously obtained from the dynamic data to supplement. Second, an objective function is constructed, consisting of the quasi-influence factors at several measurement points and structural modal parameters. The finite element model for load rating is then updated based on the Rosenbrock method. Third, on this basis, a load rating method is proposed using the updated model. The load rating method proposed in this paper can considerably reduce the time duration of traditional static load testing and effectively utilize the dynamic and static properties of box girder bridges to obtain an accurate finite element model. The load capacity obtained based on the updated model can avoid the inconsistency of the evaluation results for the different structural members using the adjustment factors specified in codes.

Keywords

Acknowledgement

This research work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 52078102, 52322807 and 51978128), the Fundamental Research Funds for the Central Universities (Grant Nos. DUT21JC38 and DUT22ZD213), and the Key Laboratory of Performance Evolution and Control for Engineering Structures in Tongji University, Ministry of Education (Grant No. 2022KF-1).

References

  1. AASHTO (2011), The Manual for Bridge Evaluation, AASHTO, Farmington Hills, MI, USA. 
  2. AASHTO (2020), AASHTO LRFD Bridge Design Specifications, AASHTO, Farmington Hills, MI, USA. 
  3. Abedin, M., y Basalo, F.J.D.C., Kiani, N., Mehrabi, A.B. and Nanni, A. (2022), "Bridge load testing and damage evaluation using model updating method", Eng. Struct., 252, 113648. https://doi.org/10.1016/j.engstruct.2021.113648 
  4. Aloisio, A., Alaggio, R. and Fragiacomo, M. (2020), "Dynamic identification and model updating of full-scale concrete box girders based on the experimental torsional response", Constr. Build. Mater., 264, 120146. https://doi.org/10.1016/j.conbuildmat.2020.120146 
  5. Altunisik, A.C., Kalkan, E., Okur, F.Y., Karahasan, O.S. and Ozgan, K. (2020), "Finite-element model updating and dynamic responses of reconstructed historical timber bridges using ambient vibration test results", J. Perform. Constr. Facil., 34(1), 04019085. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001344 
  6. Brincker, R., Zhang, L.M. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10(3), 441-445. https://doi.org/10.1088/0964-1726/10/3/303 
  7. Chang, S.T. (2004), "Shear lag effect in simply supported prestressed concrete box girder", J. Bridge Eng., 9(2), 178-184. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:2(178) 
  8. Hester, D., Koo, K., Xu, Y., Brownjohn, J. and Bocian, M. (2019), "Boundary condition focused finite element model updating for bridges", Eng. Struct., 198, 109514. https://doi.org/10.1016/j.engstruct.2019.109514 
  9. Jung, D.-S. and Kim, C.-Y. (2013), "Finite element model updating on small-scale bridge model using the hybrid genetic algorithm", Struct. Infrastruct. Eng., 9(5), 481-495. https://doi.org/10.1080/15732479.2011.564635 
  10. Liew, K.M. and Han, J.B. (1997), "Bending analysis of simply supported shear deformable skew plates", J. Eng. Mech., 123(3), 214-221. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(214) 
  11. Lin, S.-W., Du, Y.-L., Yi, T.-H. and Yang, D.-H. (2022), "Model Updating Using Bridge Influence Lines Based on an Adaptive Metamodel Global Optimization Method", J. Bridge Eng., 27(3), 04022003. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001839 
  12. Martini, A., Tronci, E.M., Feng, M.Q. and Leung, R.Y. (2022), "A computer vision-based method for bridge model updating using displacement influence lines", Eng. Struct., 259, 14. https://doi.org/10.1016/j.engstruct.2022.114129 
  13. Meng, K., Cui, C., Liang, Z., Li, H. and Pei, H., (2020), "A new approach for longitudinal vibration of a large-diameter floating pipe pile in visco-elastic soil considering the three-dimensional wave effects", Comput. Geotech., 128, 103840. https://doi.org/10.1016/j.compgeo.2020.103840 
  14. MOT (Ministry of Transport of the People's Republic of China), (2011), JTG/T-J21-2011 Specifications for Inspection and Evaluation of Loadbearing Capacity of Highway Bridges, China Communications Press, Beijing, China. 
  15. Ren, W.X. and Zong, Z.H. (2004), "Output-only modal parameter identification of civil engineering structures", Struct. Eng. Mech., Int. J., 17(3-4), 429-444. https://doi.org/10.12989/sem.2004.17.3_4.429 
  16. Sanayei, M., Phelps, J.E., Sipple, J.D., Bell, E.S. and Brenner, B.R. (2012), "Instrumentation, nondestructive testing, and finite-element model updating for bridge evaluation using strain measurements", J. Bridge Eng., 17(1), 130-138. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000228 
  17. Schlune, H., Plos, M. and Gylltoft, K. (2009), "Improved bridge evaluation through finite element model updating using static and dynamic measurements", Eng. Struct., 31(7), 1477-1485. https://doi.org/10.1016/j.engstruct.2009.02.011 
  18. Sun, Z., Siringoringo, D.M. and Fujino, Y. (2021), "Load-carrying capacity evaluation of girder bridge using moving vehicle", Eng. Struct., 229, 12. https://doi.org/ 10.1016/j.engstruct.2020.111645 
  19. Timoshenko, S.P. and Young, D.H. (1968), Theory of Structures, McGraw-Hill. New York, NY, USA. 
  20. Xin, Y., Li, J., Wang, X. and Hampson, K. (2022), "Load-Carrying Capacity Assessment of an Existing Highway Bridge Based on Hybrid Finite-Element Model Updating", J. Perform. Constr. Facil., 36(3), 04022028. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001729 
  21. Xue, M.-S., Yi, T.-H., Qu, C.-X. and Li, H.-N. (2022), "Deck Flexibility Identification of Bridges through a Submode Shape Combination Screening Method without a Reference Point", J. Bridge Eng., 27(8), 04022065. https://doi.org/ 10.1061/(ASCE)BE.1943-5592.0001908 
  22. Yang, D.H., Yi, T.H. and Li, H.N. (2017), "Coupled fatigue-corrosion failure analysis and performance assessment of RC bridge deck slabs", J. Bridge Eng., 22(10), 04017077. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001108 
  23. Yang, D.H., Yi, T.H., Li, H.N. and Zhang, Y.F. (2018), "Correlation-based estimation method for cable-stayed bridge girder deflection variability under thermal action", J. Perform. Constr. Facil., 32(5), 04018070. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001212 
  24. Yang, D.H., Zhou, H., Yi, T.H., Li, H.N. and Bai, H.F. (2022), "Joint deterioration detection based on field-identified lateral deflection influence lines for adjacent box girder bridges", Struct. Control. Health Monit., 29(10), e3053. https://doi.org/10.1002/stc.3053 
  25. Zhang, H., DesRoches, R., Yang, Z. and Liu, S. (2010), "Experimental and analytical studies on a streamlined steel box girder", J. Constr. Steel Res., 66(7), 906-914. https://doi.org/10.1016/j.jcsr.2010.02.001 
  26. Zheng, X., Yi, T.-H., Zhong, J.-W. and Yang, D.-H. (2022), "Rapid evaluation of load-carrying capacity of long-span bridges using limited testing vehicles", J. Bridge Eng., 27(4), 04022008. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001838 
  27. Zordan, T., Briseghella, B. and Liu, T. (2014), "Finite element model updating of a tied-arch bridge using Douglas-Reid method and Rosenbrock optimization algorithm", J. Traffic Transp. Eng., 1(4), 280-292. https://doi.org/10.1016/S2095-7564(15)30273-7