DOI QR코드

DOI QR Code

Servo control strategy for uni-axial shake tables using long short-term memory networks

  • Pei-Ching Chen (Department of Civil and Construction Engineering, National Taiwan University of Science and Technology) ;
  • Kui-Xing Lai (Department of Civil and Construction Engineering, National Taiwan University of Science and Technology)
  • Received : 2023.03.03
  • Accepted : 2023.11.09
  • Published : 2023.12.25

Abstract

Servo-motor driven uniaxial shake tables have been widely used for education and research purposes in earthquake engineering. These shake tables are mostly displacement-controlled by a digital proportional-integral-derivative (PID) controller; however, accurate reproduction of acceleration time histories is not guaranteed. In this study, a control strategy is proposed and verified for uniaxial shake tables driven by a servo-motor. This strategy incorporates a deep-learning algorithm named Long Short-Term Memory (LSTM) network into a displacement PID feedback controller. The LSTM controller is trained by using a large number of experimental data of a self-made servo-motor driven uniaxial shake table. After the training is completed, the LSTM controller is implemented for directly generating the command voltage for the servo motor to drive the shake table. Meanwhile, a displacement PID controller is tuned and implemented close to the LSTM controller to prevent the shake table from permanent drift. The control strategy is named the LSTM-PID control scheme. Experimental results demonstrate that the proposed LSTM-PID improves the acceleration tracking performance of the uniaxial shake table for both bare condition and loaded condition with a slender specimen.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Ministry of Science and Technology of Taiwan (MOST 108-2221-E-011-006-MY2) which has become National Science and Technology Council (NSTC) since on July 27, 2022. Meanwhile, the shake table fabrication was supported by the Higher Education Sprout Project from the Ministry of Education in Taiwan.

References

  1. Borase, R.P., Maghade, D.K., Sondkar, S.Y. and Pawar, S.N. (2021), "A review of PID control, tuning methods and applications", Int. J. Dyn. Control, 9, 818-827. https://doi.org/10.1007/s40435-020-00665-4 
  2. Chen, P.C., Kek, M.K., Hu, Y.W. and Lai, C.T. (2018), "Statistical reference values for control performance assessment of seismic shake table testing", Earthq. Struct., Int. J., 15(6), 595-603. https://doi.org/10.12989/eas.2018.15.6.595 
  3. Chen, P.C., Sugiarto, B.J. and Chien, K.Y. (2021), "Performance-based optimization of LQR for active mass damper using symbiotic organisms search", Smart Struct. Syst., Int. J., 27(4), 705-717. https://doi.org/10.12989/sss.2021.27.4.705 
  4. Dyke, S.J., Spencer, Jr. B.F., Quast, P. and Sain, M.K. (1995), "Role of control-structure interaction in protective system design", J. Eng. Mech., 121(2), 322-338. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:2(322) 
  5. Gao, C., Wang, J., Yuan, X., Zhang, Y., Yang, Y. and Qin, M. (2021), "Review on the construction development and control technology of the shaking table", Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction, 174(1), 22-31. https://doi.org/10.1680/jsmic.21.00007 
  6. Hamidizadeh, M., Soleymani, M., Moradzadeh, H. and Ghanbari S.B. (2016), "Fuzzy supervisory control of a seismic shake table", Scientia Iranica, 23(6), 2451-2457. https://doi.org/10.24200/SCI.2016.2304 
  7. Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Computat., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735 
  8. Larbi, S.H., Bourahla, N., Benchoubane, H., Choutri, K. and Badaoui, M. (2020), "Earthquake ground motion matching on a small electric shaking table using a combined NN-PDFF controller", Shock Vib., 2020, Article ID 7260590. https://doi.org/10.1155/2020/7260590 
  9. Li, Y. and Li, J. (2019), "Overview of the development of smart base isolation system featuring magnetorheological elastomer", Smart Struct. Syst., Int. J., 24(1), 37-52. https://doi.org/10.12989/sss.2019.24.1.037 
  10. Nakata, N. (2010), "Acceleration trajectory tracking control for earthquake simulators", Eng. Struct., 32(8), 2229-2236. https://doi.org/10.1016/j.engstruct.2010.03.025 
  11. Phillips, B.M., Wierschem, N.E. and Spencer, Jr. B.F. (2014), "Model-based multi-metric control of uniaxial shake tables", Earthq. Eng. Struct. Dyn., 43(5), 681-699. https://doi.org/10.1002/eqe.2366 
  12. Rumelhart, D.E. Hinton, G.E. and Williams, R.J. (1985), "Learning internal representations by error propagation", Tech. rep. ICS 8504: Institute for Cognitive Science, University of California, San Diego, CA, USA. 
  13. Shen, G., Zheng, S.T., Ye, Z.M., Huang, Q.T., Cong, D.C. and Han, J.W. (2011), "Adaptive inverse control of time waveform replication for electrohydraulic shaking table", J. Vib. Control, 7(11), 1611-1633. https://doi.org/10.1177/1077546310380431 
  14. Soleymani, M., Khalatabari-S, A. and Ghanbari-S, B. (2019), "Fuzzy-sliding-mode supervisory control of a seismic shake table with variable payload for robust and precise acceleration tracking", J. Earthq. Eng., 23(4), 539-556. https://doi.org/10.1080/13632469.2017.1326414 
  15. Spencer, Jr. B.F. and Yang, G. (1998), "Earthquake simulator control by transfer function iteration", Proceedings of the 12th Engineering Mechanics Conference, LaJolla, CA, USA, May. 
  16. Stoten, D.P. and Gomez, E.G. (2001), "Adaptive control of shaking tables using the minimal control synthesis algorithm", Philosophical Transactions of The Royal Society of London. Series A, 1697-1723. https://doi.org/10.1098/rsta.2001.0862 
  17. Tagawa, Y. and Kajiwara, K. (2007), "Controller development for the E-Defense shaking table", Inst. Mech. Engineers, Part I: J. Syst. Control Eng., 221(2), 171-181. https://doi.org/10.1243/09596518JSCE331 
  18. Trifunac, M.D. (1971), "Zero baseline correction of strong-motion accelerograms", Bull. Seismol. Soc. Am., 61(5), 1201-1211. https://doi.org/10.1785/BSSA0610051201 
  19. Twitchell, B.S. and Symans, M.D. (2003), "Analytical modeling, system identification, and tracking performance of uniaxial seismic simulators", J. Eng. Mech., 129(12), 1485-1488. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:12(1485) 
  20. Xia, X., Zhang, X., Shi, J. and Tang, J. (2021), "Seismic isolation of railway bridges using a self-centering pier", Smart Struct. Syst., Int. J., 27(3), 447-455. https://doi.org/10.12989/sss.2021.27.3.447 
  21. Yang, T.Y., Li, K., Lin, J.Y., Li, T. and Tung, D.P. (2015), "Development of high-performance shake tables using the hierarchical control strategy and nonlinear control techniques", Earthq. Eng. Struct. Dyn., 44(11), 1717-1728. https://doi.org/10.1002/eqe.2551