과제정보
Research is supported by the National Natural Science Foundation of China (Grant Nos. 51978213, 52378150, 51878525), the National Key Research and Development Program of China (Grant Nos. 2017YFC0703605, 2016YFC0701106), and the Hainan Province Science and Technology Special Fund (Grant No. ZDKJ2021024).
참고문헌
- Ahmadizadeh, M., Mosqueda, G. and Reinhorn, A.M. (2008), "Compensation of actuator delay and dynamics for real-time hybrid structural simulation", Earthq. Eng. Struct. Dyn., 37(1), 21-42. https://doi.org/10.1002/eqe.743
- Airouche, A., Bechtoula, H., Aknouche, H., Thoen, B.K. and Benouar, D. (2014), "Experimental identification of the six DOF CGS, Algeria, shaking table system", Smart Struct. Syst., Int. J., 13(1), 137-154. https://doi.org/10.12989/sss.2014.13.1.137
- Bursi, O.S., Jia, C., Vulcan, L., Neild, S.A. and Wagg, D.J. (2011), "Rosenbrock-based algorithms and subcycling strategies for real-time nonlinear substructure testing", Earthq. Eng. Struct. Dyn., 40(1), 1-19. https://doi.org/10.1002/eqe.1017
- Calabrese, A., Strano, S. and Terzo, M. (2015), "Real-time hybrid simulations vs shaking table tests: case study of a fibre- reinforced bearings isolated building under seismic loading", Struct. Control Health. Monit., 22(3), 535-556. https://doi.org/10.1002/stc.1687
- Chen, C. and Ricles, J.M. (2009), "A Tracking Error-Based Adaptive Compensation Scheme for Real-Time Hybrid Simulation", In: Structures Congress 2009: Don't Mess with Structural Engineers: Expanding Our Role, pp. 1-10. https://doi.org /10.1061/41031(341)177
- Chen, C. and Ricles, J.M. (2012), "Large-scale real-time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation", Earthq. Eng. Struct. Dyn., 41(3), 549-569. https://doi.org/10.1002/eqe.1144
- Darby, A.P., Blakeborough, A. and Williams, M.S. (2001), "Improved control algorithm for real-time substructure testing", Earthq. Eng. Struct. Dyn., 30(3), 431-448. https://doi.org/10.1002/eqe.18
- Devin, A. and Fanning, P.J. (2019), "Non-structural elements and the dynamic response of buildings: A review", Eng. Struct., 187, 242-250. https://doi.org/10.1016/j.engstruct.2019.02.044
- Ferry, D., Maghareh, A., Bunting, G., Prakash, A., Agrawal, K., Gill, C., Lu, C. and Dyke, S. (2014), "On the performance of a highly parallelizable concurrency platform for real-time hybrid simulation", Proceedings of the Sixth World Conference on Structural Control and Monitoring.
- Galmez, C. and Fermandois, G. (2022), "Robust adaptive model-based compensator for the real-time hybrid simulation benchmark", Struct. Control Health. Monit., 29(7), e2962. https://doi.org/10.1002/stc.2962
- Gao, X., Castaneda, N. and Dyke, S.J. (2013), "Real time hybrid simulation: from dynamic system, motion control to experimental error", Earthq. Eng. Struct. Dyn., 42(6), 815-832. https://doi.org/10.1002/eqe.2246
- Horiuchi, T. and Konno, T. (2001), "A new method for compensating actuator delay in real-time hybrid experiments", Philosoph. Transact. Royal Soc. London. Series A: Mathe. Phys. Eng. Sci., 359(1786), 1893-1909. https://doi.org/10.1098/rsta.2001.0878
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real- time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Jung, R.Y., Benson Shing, P., Stauffer, E. and Thoen, B. (2007), "Performance of a real-time pseudodynamic test system considering nonlinear structural response", Earthq. Eng. Struct. Dyn., 36(12), 1785-1809. https://doi.org/10.1002/eqe.722
- Li, T., Su, M., Sui, Y. and Ma, L. (2021), "Real-time hybrid simulation of a space substructure based on high-strength steel composite Y-eccentrically braced frames", Struct. Control Health. Monit., 28(8), e2771. https://doi.org/10.1002/stc.2771
- Lu, X., Zou, Y., Lu, W. and Zhao, B. (2007), "Shaking table model test on shanghai world financial center tower", Earthq. Eng. Struct. Dyn., 36(4), 439-457. https://doi.org/10.1002/eqe.634
- Lu, L., Wang, J. and Zhu, F. (2020), "Improvement of real-time hybrid simulation using parallel finite-element program", J. Earthq. Eng., 24(10), 1547-1565. https://doi.org/10.1080/13632469.2018.1469442
- Mahin, S.A. and Shing, P.S.B. (1985), "Pseudodynamic method for seismic testing", J. Struct. Eng., 111(7), 1482-1503. https://doi.org /10.1061/(ASCE)0733-9445(1985)111:7(1482)
- Mercan, O., Ricles, J., Sause, R. and Marullo, T. (2008), "Real-time large-scale hybrid testing for seismic performance evaluation of smart structures", Smart Struct. Syst., Int. J., 4(5), 667-684. https://doi.org/10.12989/sss.2008.4.5.667
- Mourao, R., Cacoilo, A., Teixeira-Dias, F., Maazoun, A., Stratford, T. and Lecompte, D. (2022), "Influence of EBR on the structural resistance of RC slabs under quasi-static and blast loading: Experimental testing and numerical analysis", Eng. Struct., 272, 114998. https://doi.org/10.1016/j.engstruct.2022.114998
- Nakashima, M. (2001), "Development, potential, and limitations of real-time online (pseudo-dynamic) testing", Philosoph. Transact. Royal Soc. London. Series A: Mathe. Phys. Eng. Sci., 359(1786), 1851-1867. https://doi.org/10.1098/rsta.2001.0876
- Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
- Ning, X., Huang, W., Xu, G., Wang, Z. and Zheng, L. (2023a), "Validation of model-based adaptive control method for real-time hybrid simulation", Smart Struct. Syst., Int. J., 31(3), 259-273. https://doi.org/10.12989/sss.2023.31.3.259
- Ning, X., Huang, W., Xu, G., Wang, Z. and Zheng, L. (2023b), "A model-based adaptive control method for real-time hybrid simulation", Smart Struct. Syst., Int. J., 31(5), 437-454. https://doi.org/10.12989/sss.2023.31.5.437
- Saouma, V., Kang, D.H. and Haussmann, G. (2012), "A computational finite-element program for hybrid simulation", Earthq. Eng. Struct. Dyn., 41(3), 375-389. https://doi.org/10.1002/eqe.1134
- Schellenberg, A.H., Becker, T.C. and Mahin, S.A. (2017), "Hybrid shake table testing method: Theory, implementation and application to midlevel isolation", Struct. Control Health. Monit., 24(5), e1915. https://doi.org/10.1002/stc.1915
- Shao, P., Guo, W., Lei, Q. and Zeng, C. (2021), "Adaptive compound control for the real-time hybrid simulation of high-speed railway train-bridge coupling vibration", Struct. Control Health. Monit., 28(11), e2816. https://doi.org/10.1002/stc.2816
- Tang, Z., Dong, X., Li, Z. and Du, X. (2022), "Implementation of real-time hybrid simulation based on GPU computing", Struct. Des. Tall. Spec., 31(12), e1942. https://doi.org/10.1002/tal.1942
- Tsokanas, N., Pastorino, R. and Stojadinovic, B. (2022), "Adaptive model predictive control for actuation dynamics compensation in real-time hybrid simulation", Mech Mach. Theory, 172, 104817. https://doi.org/10.1016/j.mechmachtheory.2022.104817
- Verma, M., Sivaselvan, M.V. and Rajasankar, J. (2019), "Impedance matching for dynamic substructuring", Struct. Control Health. Monit., 26(11), e2402. https://doi.org/10.1002/stc.2402
- Wallace, M.I., Sieber, J., Neild, S.A., Wagg, D.J. and Krauskopf, B. (2005), "Stability analysis of real-time dynamic substructuring using delay differential equation models", Earthq. Eng. Struct. Dyn., 34(15), 1817-1832. https://doi.org/10.1002/eqe.513
- Wang, Z., Wu, B., Xu, G. and Bursi, O.S. (2018a), "An improved equivalent force control algorithm for hybrid seismic testing of nonlinear systems", Struct. Control Health. Monit., 2(2), e2076. https://doi.org/10.1002/stc.2076
- Wang, J., Lu, L. and Zhu, F. (2018b), "Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation", Earthq. Eng. Eng. Vib., 17, 73-86. https://doi.org/10.1007/s11803-018-0426-0
- Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569
- Wu, B., Deng, L. and Yang, X. (2009), "Stability of central difference method for dynamic real-time substructure testing", Earthq. Eng. Struct. Dyn., 38(14), 1649-1663. https://doi.org/10.1002/eqe.927
- Xu, G., Wang, Z., Wu, B., Bursi, O.S., Tan, X., Yang, Q. and Wen, L. (2017), "Seismic performance of precast shear wall with sleeves connection based on experimental and numerical studies", Eng. Struct., 150, 346-358. https://doi.org/10.1016/j.engstruct.2017.06.026
- Xu, G., Zheng, L. and Bao, Y. (2022), "Shaking table substructure test of tuned liquid damper for controlling earthquake response of structure", Struct. Control Health Monit., 29(12), e3122. https://doi.org/10.1002/stc.3122