DOI QR코드

DOI QR Code

A real-time hybrid testing based on restart-loading technology for viscous damper

  • Guoshan Xu (School of Civil Engineering, Harbin Institute of Technology) ;
  • Lichang Zheng (School of Civil Engineering, Harbin Institute of Technology) ;
  • Bin Wu (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Zhuangzhuang Ji (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Zhen Wang (School of Civil Engineering and Architecture, Wuhan University of Technology) ;
  • Ge Yang (School of Civil Engineering and Architecture, Wuhan University of Technology)
  • Received : 2023.07.25
  • Accepted : 2023.11.09
  • Published : 2023.12.25

Abstract

Real-Time Hybrid Testing (RTHT) requires the numerical substructure calculations to be completed within the defined integration time interval due to its real-time loading demands. For solving the problem, A Real-Time Hybrid Testing based on Restart-Loading Technology (RTHT-RLT) is proposed in this paper. In the proposed method, in case of the numerical substructure calculations cannot be completed within the defined integration time interval, the experimental substructure was returned back to the initial state statically. When the newest loading commands were calculated by the numerical substructure, the experimental substructure was restarted loading from the initial state to the newest loading commands so as to precisely disclosing the dynamic performance of the experimental substructure. Firstly, the methodology of the RTHT-RLT is proposed. Furthermore, the numerical simulations and experimental tests on one frame structure with a viscous damper are conducted for evaluating the feasibility and effectiveness of the proposed RTHT-RLT. It is shown that the proposed RTHT-RLT innovatively renders the nonreal-time refined calculation of the numerical substructure feasible for the RTHT. The numerical and experimental results show that the proposed RTHT-RLT exhibits excellent performance in terms of stability and accuracy. The proposed RTHT-RLT may have broad application prospects for precisely investigating the dynamic behavior of large and complex engineering structures with specific experimental substructure where a restarting procedure does not affect the relevant hysteretic response.

Keywords

Acknowledgement

Research is supported by the National Natural Science Foundation of China (Grant Nos. 51978213, 52378150, 51878525), the National Key Research and Development Program of China (Grant Nos. 2017YFC0703605, 2016YFC0701106), and the Hainan Province Science and Technology Special Fund (Grant No. ZDKJ2021024).

References

  1. Ahmadizadeh, M., Mosqueda, G. and Reinhorn, A.M. (2008), "Compensation of actuator delay and dynamics for real-time hybrid structural simulation", Earthq. Eng. Struct. Dyn., 37(1), 21-42. https://doi.org/10.1002/eqe.743
  2. Airouche, A., Bechtoula, H., Aknouche, H., Thoen, B.K. and Benouar, D. (2014), "Experimental identification of the six DOF CGS, Algeria, shaking table system", Smart Struct. Syst., Int. J., 13(1), 137-154. https://doi.org/10.12989/sss.2014.13.1.137
  3. Bursi, O.S., Jia, C., Vulcan, L., Neild, S.A. and Wagg, D.J. (2011), "Rosenbrock-based algorithms and subcycling strategies for real-time nonlinear substructure testing", Earthq. Eng. Struct. Dyn., 40(1), 1-19. https://doi.org/10.1002/eqe.1017
  4. Calabrese, A., Strano, S. and Terzo, M. (2015), "Real-time hybrid simulations vs shaking table tests: case study of a fibre- reinforced bearings isolated building under seismic loading", Struct. Control Health. Monit., 22(3), 535-556. https://doi.org/10.1002/stc.1687
  5. Chen, C. and Ricles, J.M. (2009), "A Tracking Error-Based Adaptive Compensation Scheme for Real-Time Hybrid Simulation", In: Structures Congress 2009: Don't Mess with Structural Engineers: Expanding Our Role, pp. 1-10. https://doi.org /10.1061/41031(341)177
  6. Chen, C. and Ricles, J.M. (2012), "Large-scale real-time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation", Earthq. Eng. Struct. Dyn., 41(3), 549-569. https://doi.org/10.1002/eqe.1144
  7. Darby, A.P., Blakeborough, A. and Williams, M.S. (2001), "Improved control algorithm for real-time substructure testing", Earthq. Eng. Struct. Dyn., 30(3), 431-448. https://doi.org/10.1002/eqe.18
  8. Devin, A. and Fanning, P.J. (2019), "Non-structural elements and the dynamic response of buildings: A review", Eng. Struct., 187, 242-250. https://doi.org/10.1016/j.engstruct.2019.02.044
  9. Ferry, D., Maghareh, A., Bunting, G., Prakash, A., Agrawal, K., Gill, C., Lu, C. and Dyke, S. (2014), "On the performance of a highly parallelizable concurrency platform for real-time hybrid simulation", Proceedings of the Sixth World Conference on Structural Control and Monitoring.
  10. Galmez, C. and Fermandois, G. (2022), "Robust adaptive model-based compensator for the real-time hybrid simulation benchmark", Struct. Control Health. Monit., 29(7), e2962. https://doi.org/10.1002/stc.2962
  11. Gao, X., Castaneda, N. and Dyke, S.J. (2013), "Real time hybrid simulation: from dynamic system, motion control to experimental error", Earthq. Eng. Struct. Dyn., 42(6), 815-832. https://doi.org/10.1002/eqe.2246
  12. Horiuchi, T. and Konno, T. (2001), "A new method for compensating actuator delay in real-time hybrid experiments", Philosoph. Transact. Royal Soc. London. Series A: Mathe. Phys. Eng. Sci., 359(1786), 1893-1909. https://doi.org/10.1098/rsta.2001.0878
  13. Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real- time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
  14. Jung, R.Y., Benson Shing, P., Stauffer, E. and Thoen, B. (2007), "Performance of a real-time pseudodynamic test system considering nonlinear structural response", Earthq. Eng. Struct. Dyn., 36(12), 1785-1809. https://doi.org/10.1002/eqe.722
  15. Li, T., Su, M., Sui, Y. and Ma, L. (2021), "Real-time hybrid simulation of a space substructure based on high-strength steel composite Y-eccentrically braced frames", Struct. Control Health. Monit., 28(8), e2771. https://doi.org/10.1002/stc.2771
  16. Lu, X., Zou, Y., Lu, W. and Zhao, B. (2007), "Shaking table model test on shanghai world financial center tower", Earthq. Eng. Struct. Dyn., 36(4), 439-457. https://doi.org/10.1002/eqe.634
  17. Lu, L., Wang, J. and Zhu, F. (2020), "Improvement of real-time hybrid simulation using parallel finite-element program", J. Earthq. Eng., 24(10), 1547-1565. https://doi.org/10.1080/13632469.2018.1469442
  18. Mahin, S.A. and Shing, P.S.B. (1985), "Pseudodynamic method for seismic testing", J. Struct. Eng., 111(7), 1482-1503. https://doi.org /10.1061/(ASCE)0733-9445(1985)111:7(1482)
  19. Mercan, O., Ricles, J., Sause, R. and Marullo, T. (2008), "Real-time large-scale hybrid testing for seismic performance evaluation of smart structures", Smart Struct. Syst., Int. J., 4(5), 667-684. https://doi.org/10.12989/sss.2008.4.5.667
  20. Mourao, R., Cacoilo, A., Teixeira-Dias, F., Maazoun, A., Stratford, T. and Lecompte, D. (2022), "Influence of EBR on the structural resistance of RC slabs under quasi-static and blast loading: Experimental testing and numerical analysis", Eng. Struct., 272, 114998. https://doi.org/10.1016/j.engstruct.2022.114998
  21. Nakashima, M. (2001), "Development, potential, and limitations of real-time online (pseudo-dynamic) testing", Philosoph. Transact. Royal Soc. London. Series A: Mathe. Phys. Eng. Sci., 359(1786), 1851-1867. https://doi.org/10.1098/rsta.2001.0876
  22. Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
  23. Ning, X., Huang, W., Xu, G., Wang, Z. and Zheng, L. (2023a), "Validation of model-based adaptive control method for real-time hybrid simulation", Smart Struct. Syst., Int. J., 31(3), 259-273. https://doi.org/10.12989/sss.2023.31.3.259
  24. Ning, X., Huang, W., Xu, G., Wang, Z. and Zheng, L. (2023b), "A model-based adaptive control method for real-time hybrid simulation", Smart Struct. Syst., Int. J., 31(5), 437-454. https://doi.org/10.12989/sss.2023.31.5.437
  25. Saouma, V., Kang, D.H. and Haussmann, G. (2012), "A computational finite-element program for hybrid simulation", Earthq. Eng. Struct. Dyn., 41(3), 375-389. https://doi.org/10.1002/eqe.1134
  26. Schellenberg, A.H., Becker, T.C. and Mahin, S.A. (2017), "Hybrid shake table testing method: Theory, implementation and application to midlevel isolation", Struct. Control Health. Monit., 24(5), e1915. https://doi.org/10.1002/stc.1915
  27. Shao, P., Guo, W., Lei, Q. and Zeng, C. (2021), "Adaptive compound control for the real-time hybrid simulation of high-speed railway train-bridge coupling vibration", Struct. Control Health. Monit., 28(11), e2816. https://doi.org/10.1002/stc.2816
  28. Tang, Z., Dong, X., Li, Z. and Du, X. (2022), "Implementation of real-time hybrid simulation based on GPU computing", Struct. Des. Tall. Spec., 31(12), e1942. https://doi.org/10.1002/tal.1942
  29. Tsokanas, N., Pastorino, R. and Stojadinovic, B. (2022), "Adaptive model predictive control for actuation dynamics compensation in real-time hybrid simulation", Mech Mach. Theory, 172, 104817. https://doi.org/10.1016/j.mechmachtheory.2022.104817
  30. Verma, M., Sivaselvan, M.V. and Rajasankar, J. (2019), "Impedance matching for dynamic substructuring", Struct. Control Health. Monit., 26(11), e2402. https://doi.org/10.1002/stc.2402
  31. Wallace, M.I., Sieber, J., Neild, S.A., Wagg, D.J. and Krauskopf, B. (2005), "Stability analysis of real-time dynamic substructuring using delay differential equation models", Earthq. Eng. Struct. Dyn., 34(15), 1817-1832. https://doi.org/10.1002/eqe.513
  32. Wang, Z., Wu, B., Xu, G. and Bursi, O.S. (2018a), "An improved equivalent force control algorithm for hybrid seismic testing of nonlinear systems", Struct. Control Health. Monit., 2(2), e2076. https://doi.org/10.1002/stc.2076
  33. Wang, J., Lu, L. and Zhu, F. (2018b), "Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation", Earthq. Eng. Eng. Vib., 17, 73-86. https://doi.org/10.1007/s11803-018-0426-0
  34. Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569
  35. Wu, B., Deng, L. and Yang, X. (2009), "Stability of central difference method for dynamic real-time substructure testing", Earthq. Eng. Struct. Dyn., 38(14), 1649-1663. https://doi.org/10.1002/eqe.927
  36. Xu, G., Wang, Z., Wu, B., Bursi, O.S., Tan, X., Yang, Q. and Wen, L. (2017), "Seismic performance of precast shear wall with sleeves connection based on experimental and numerical studies", Eng. Struct., 150, 346-358. https://doi.org/10.1016/j.engstruct.2017.06.026
  37. Xu, G., Zheng, L. and Bao, Y. (2022), "Shaking table substructure test of tuned liquid damper for controlling earthquake response of structure", Struct. Control Health Monit., 29(12), e3122. https://doi.org/10.1002/stc.3122