DOI QR코드

DOI QR Code

Comparison of Carbon Storage Based on Alternative Action by Land Use Planning

토지이용에 따른 대안별 탄소 저장량 비교

  • Seulki Koo (Department of Environmental Sciences & Engineering, Ewha Womans University) ;
  • Youngsoo Lee (Korea Environmetal Institute) ;
  • Sangdon Lee (Department of Environmental Sciences & Engineering, Ewha Womans University)
  • Received : 2023.05.19
  • Accepted : 2023.11.30
  • Published : 2023.12.31

Abstract

Carbon management is emerging as an important factor for global warming control, and land use change is considered one of the causes. To quantify the changes in carbon stocks due to development, this study attempted to calculate carbon storage by borrowing the formula of the InVEST Carbon Storage and Sequestration Model (InVEST Model). Before analyzing carbon stocks, a carbon pool was compiled based on previous studies in Korea. Then, we estimated the change in carbon stocks according to the development of Osong National Industrial Park (ONIP) and the application of alternatives. The analysis shows that 16,789.5 MgC will be emitted under Alternative 1 and 16,305.3 MgC under Alternative 2. These emissions account for 44.4% and 43.1% of the pre-project carbon stock, respectively, and shows that choosing Alternative 2 is advantageous for reducing carbon emissions. The difference is likely due to the difference in grassland area between Alternatives 1 and 2. Even if Alternative 2 is selected, efforts are needed to increase the carbon storage effect by managing the appropriate level of green cover in the grassland, creating multi-layered vegetation, and installing low-energy facilities. In addition, it is suggested to conserve wetlands that can be lost during the stream improvement process or to create artificial wetlands to increase carbon storage. The assessment of carbon storage using carbon pools by land cover can improve the objectivity of comparison and evaluation analysis results for land use plans in Environmental Impact Assessment and Strategic Environmental Impact Assessment. In addition, the carbon pool generated in this study is expected to be used as a basis for improving the accuracy of such analyses.

탄소의 관리는 지구온난화 억제를 위한 중요한 요인으로서 대두되고 있으며, 토지이용 변화는 그 원인 중 하나로 손꼽히고 있다. 본 연구에서는 개발에 따른 탄소 저장량의 변화를 정량화하기 위하여 InVEST Carbon Storage and Sequestration Model(InVEST 모델)의 계산식을 차용한 탄소 저장량 산정을 시도하였다. 탄소 저장량 분석에 앞서 국내 문헌자료를 기반으로 탄소 풀을 구성하였으며, 이를 통해 오송 ◯◯국가산업단지(Osong National Industrial Park, ONIP) 개발 및 대안 적용에 따른 탄소 저장량 변화를 추 정하였다. 분석 결과 '대안 1'을 적용할 경우 총 16,789.5MgC, '대안 2'를 적용할 경우 16,305.3MgC의 탄소가 방출 될 것으로 예상된다. 이는 사업 전 탄소 저장량의 각각 44.4%, 43.1%를 차지하며, '대안 2'를 선택하는 것이 탄소 배출 저감에 유리한 것으로 나타났다. 이러한 차이는 대안 1과 2의 초지 면적 차이에서 기인한 것으로 판단된다. 대안 2를 택할지라도 초지 내 적정 수준의 녹피율 관리와 다층구조 식생 조성 및 에너지 사용량이 낮은 시설의 설치 등 그 효과를 높이기 위한 노력이 필요하다. 이와 더불어 하천 정비 과정에서 사라지는 습지를 보존, 혹은 인공습지를 조성함으로써 탄소 저장량을 증대할 수 있을 것으로 사료된다. 위와 같은 토지피복별 탄소 계수를 활용한 탄소 저장량의 평가는 환경영향평가 및 전략환경영향평가 시 토지이용 계획에 대한 비교·평가 분석 결과의 객관성을 높이는 데 기여할 수 있다. 더불어 본 연구에서 구축한 탄소 풀은 분석의 정확도를 높이기 위한 기초자료로 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 환경부 환경산업기술원(RS-2022-KE002025), 한국연구재단(KRF-2021R1A2C1011213), 서울녹색환경지원센터(SESTC-2023), 환경부 기후변화영향평가제도 도입을 위한 시범사업(2022030A58C-00)의 지원을 받아 수행되었습니다.

References

  1. Alaoui HI, Chemchaoui A, Asri BE, Ghazi S, Brhadda N, Ziri R. 2023. Modeling predictive changes of carbon storage using invest model in the Beht watershed (Morocco). Modeling Earth Systems and Environment, 9: 4313-4322. https://doi.org/10.1007/s40808-023-01697-3. 
  2. An KH, Kim HK, Choi YS. 2011. A Study on the City Park Plan of Carbon-neutral or CO2 absorber. Journal of the Architectural Institute of Korea, 27(9): 47-54. 
  3. An KH. 2021. The Role of City Parks to Realize a Carbon Neutral City. Architecture, 66(1): 26-29. 
  4. An SE, Lee JM, Kim CS. 2022. Relationships between Soil Carbon Storage and Soil Properties of Urban Parks in Jinju-si, Gyeongsangnam-do. Korean Journal of Agricultural and Forest Meteorology, 24(2): 115-123. https://doi.org/10.5532/KJAFM.2022.24.2.115. 
  5. Armson D, Stringer P, Ennos AR. 2013. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK. Urban Forestry & Urban Greening, 12(3): 282-286. https://doi.org/10.1016/j.ufug.2013.04.001. 
  6. Bae J, Ryu Y. 2015. Land use and land cover changes explain spatial and temporal variations of the soil organic carbon stocks in a constructed urban park. Landscape and Urban Planning, 136: 57-67. https://doi.org/10.1016/j.landurbplan.2014.11.015. 
  7. Bae JH. 2021. Evaluation of soil organic carbon stocks in heterogeneous land cover types towards carbon neutral city. [Ph.D. Thesis, Seoul National Universiy]. https://s-space.snu.ac.kr/handle/10371/177723. 
  8. Breuste J, Schnellinger J, Qureshi S, Faggi A. 2013. Urban Ecosystem services on the local level: Urban green spaces as providers. Ekologia (Bratislava), 32(3): 290-304. https://doi.org/10.2478/eko-2013-0026. 
  9. Canedoli C, Ferre C, EI Khair DA, Padoa-Schioppa E, Comolli R. 2020. Soil organic carbon stock in different urban land uses: high stock evidence in urban parks. Urban Ecosystems, 23: 159-171. https://doi.org/10.1007/s11252-019-00901-6. 
  10. Choi JY, Lee SD. 2020. Change of Carbon Fixation and Economic Assessment according to the Implementation of the Sunset Provision. Ecology and Resilient Infrastructure, 7(2): 126-133. https://doi.org/10.17820/eri.2020.7.2.126. 
  11. Choo IK, Seong YJ, Shiksha B, Jung YH. 2021. Calculation of Soil Carbon Changes by Administrative District with Regard to Land Cover Changes. Journal of the Korean GEO-environmental Society, 22(3): 37-43. https://doi.org/10.14481/jkges.2021.22.3.37. 
  12. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global consequences of land use. Science, 309(5734): 570-574. https://doi.org/10.1126/science.1111772. 
  13. Gyeonggi Research Institute (GRI). 2009. Quantification of CO2 uptake by urban trees and greenspace management for C sequestration. (2009-9). Gyeonggi Research Institute. https://www.gri.re.kr/web/main/index.do. 
  14. Han YS, Nam HS, Park KL, Lee YM, Lee BM, Park KC. 2020. Evaluation of Soil Carbon Storages in the Organic Farming Paddy Fields. Journal of the Korea Organic Resources Recycling Association, 28(1): 73-82. https://doi.org/10.17137/korrae.2020.28.1.73. 
  15. Hwang JH, Choi YY, Yoo YJ, Sun Z, Cho HJ, Jeon SW. 2021. Analysis of Land Use Changes and Carbon Storage by Region under the Seoul Metropolitan Area Readjustment Planning Act Using the InVEST Carbon Model. Journal of Climate Change Research, 12(5-1): 523-535. https://doi.org/10.15531/KSCCR.2021.12.5.523. 
  16. Hwang JH, Jang RI, Jeon SW. 2022. A Study on the Estimation Method of Carbon Storage Using Environmental Spatial Information and InVEST Carbon Model: Focusing on Sejong Special Self-Governing City - Using Ecological and Natural Map, Environmental Conservation Value Assessment Map, and Urban Ecological Map -. Journal of Korea Society of Environmental Restoration Technology, 25(5): 15-27. https://doi.org/10.13087/kosert.2022.25.5.15. 
  17. Interagency Working Grouop on Social Cost of Greenhouse Gases (IWG). 2021. Technical Support Document: Social Cost of Carbon, Methane, And Nitrous Oxide Interim Estimates under Executive Order 13990. United States Government. Available from: https://www.whitehouse.gov/omb/information-regulatory-affairs/regulatory-matters/#scghgs
  18. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) [Internet]. [date unknown]. Carbon Storage and Sequestration; [cited 2023 Mar 8]. Available from: http://releases.naturalcapitalproject.org/investuserguide/latest/carbonstorage.html 
  19. Intergovernmental Panel on Climate Change (IPCC), 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. 3056. https://10.1017/9781009325844. 
  20. Jang JH, Shin JH. 2022. The Analysis of the Carbon Storage Characteristics of Neighborhood Park in Urban Development Areas. Journal of the Korea Landscape Council, 14(2): 126-140. https://doi.org/10.36466/KLC.14.2.9. 
  21. Jo HK. 1999. Carbon Uptake and Emissions in Urban Landscape, and the Role of Urban Greenspace for several Cities in Kangwon Province. Journal of the Korean Institute of Landscape Architecture, 27(1): 39-53. 
  22. Jo HK, Park SM, Kim JY, Park HM. 2014. Carbon Uptake and Emissions of Apple Orchards as a Production-type Greenspace. Journal of the Korean Institute of Landscape Architecture, 42(5): 64-72. https://doi.org/10.9715/KILA.2014.42.5.064. 
  23. Jo HK, Park HM, Kim JY. 2020. Carbon Reduction and Enhancement for Greenspace in Institutional Lands. Journal of the Korea, 48(4): 1-7. https://doi.org/10.9715/KILA.2020.48.4.001. 
  24. Korea Environment Institute (KEI). 2016. General Studies Integrated Assessment to Environmental Valuation via Impact Pathway Analysis. (Report No. 2016-10). Korea Environment Institute. https://docviewer.nanet.go.kr. 
  25. Kim JS, Han SH, Chang HN, Kim TY, Jang IY, Oh WS, Seo CW, Lee WK, Son YH. 2016. Quantitative Assessment of Climate Regulating Ecosystem Services Using Carbon Storage in Major Korean Ecosystems. Korean Society of Environmental Biology (Environmental Biology), 34(1): 8-17. https://doi.org/10.11626/KJEB.2016.34.1.008. 
  26. Lee JB, Shim KK. 1998. A Study on the Optimum Planting Density of Urban Public Park in Seoul-In Case of the Munjung-Family APT. Complex-. Journal of the Korean Institute of Landscape Architecture, 26(2): 219-228. 
  27. Lee CH, Jung KY, Kang SS, Kim MS, Kim YH, Kim PJ. 2013a. Effect of long term fertilization on soil carbon and nitrogen pools in paddy soil. Korean Journal of Soil Science and Fertilizer, 46(3): 216-222. https://doi.org/10.7745/KJSSF.2013.46.3.216. 
  28. Lee TK, Choi JJ, Kim JS, Lee HC, Ro HM. 2013b. Carbon and Nitrogen Stocks of Trees and Soils in a 'Niitaka' Pear Orchard. Horticultural Science & Technology, 31(6): 828-832. https://doi.org/10.7235/hort.2013.13105. 
  29. Liu Y, Ge T, van Groenigen KJ, Yang Y, Wang P, Cheng K, Zhu Z, Wang J, Li Y, Guggenberger G, Sardans J, Penuelas J, Wu J, Kuzyakov Y. 2021. Rice paddy soils are a quantitatively important carbon store according to a global synthesis.CommunicationsEarth&Environment, 2(154). https://doi.org/10.1038/s43247-021-00229-0. 
  30. Ministry of Land, Infrastructure and Transport (MOLIT). 2021. Environmental Assessment in Osnong National Industrial Park (decision content on evaluation criteria, range and ect). Unpublished. 
  31. National Institute of Agricultural Sciences (NAAS). 2013. Estimation of Carbon Storage in Cropland Using Remote Sensing. Ministry of Education, Science and Technology. https://scienceon.kisti.re.kr/commons/util/originalView.do. 
  32. National Institute of Forest Science (NIFoS). 2006. Establishment of a Greenhouse Gas Statistics System for the Forest Sector in Response to the UNFCCC. National Institute of Forest Science. 
  33. National Institute of Agricultural Sciences (NAAS). 2021. Assessing Soil Organic Carbon Stocks and Fluctuations Under Changing Land Use. National Institute of Agricultural Sciences. 
  34. Oh KY, Lee MJ, No WY. 2016. A Study on the Improvement of Sub-divided Land Cover Map Classification System - Based on the Land Cover Map by Ministry of Environment -. Korean Journal of Remote Sensing, 32(2): 105-118. https://doi.org/10.7780/kjrs.2016.32.2.4. 
  35. Qin Z, Yang X, Song Z, Peng B, Van Zwieten L, Yu C, Wu S, Mohammad M, Wang H. 2021. Vertical distributions of organic carbon fractions under paddy and forest soils derived from black shales: Implications for potential of long-term carbon storage. Catena, 198: 105056. https://doi.org/10.1016/j.catena.2020.105056. 
  36. Robles MEL, Reyes NJDG, Choi HS, Jeon MS, Kim LH. 2023. Carbon Storage and Sequestration in Constructed Wetlands: A Systematic Review. Journal of Wetlands Research, 25(2): 132-144. https://doi.org/10.17663/JWR.2023.25.2.132. 
  37. Seoul Institute (SI). 2010. A Study on Ensuring Carbon Reservoir and Reducing Carbon Emissions Plan. (Report No. 2010-PR-15). Seoul Institute. https://www.si.re.kr/node/24596. 
  38. Song CY, Chang KS, Park KS, Lee SW. 1997. Analysis of Carbon Fixation in Natural Forests of Quercus mongolica and Q. variabilis. Journal of Korean Forest Society, 86(1): 35-45. 
  39. Tomasso LP, Leighton M. 2014. The impact of land use change for greenhouse gas inventories and state-leve climate mediation policy: A GIS methodology applied to Connecticut. Journal of Environmental Protection, 5(17): 1572-1587. http://dx.doi.org/10.4236/jep.2014.517149. 
  40. Yoo J, Kim J, Kim J, Lim J, Kang H. 2022. Soil carbon storage and its economic values of inland wetlands in Korea. Ecological Engineering, 182(106731). https://doi.org/10.1016/j.ecoleng.2022.106731. 
  41. Yu HY, Kim SH, Kim JG. 2022. Carbon sequestration potential in montane wetlands of Korea. Global Ecology and Conservation, 37: e02166. https://doi.org/10.1016/j.gecco.2022.e02166.