DOI QR코드

DOI QR Code

A study on estimating piecewise linear trend model using the simple moving average of differenced time series

차분한 시계열의 단순이동평균을 이용하여 조각별 선형 추세 모형을 추정하는 방법에 대한 연구

  • Okyoung Na (Department of Applied Statistics, Kyonggi University)
  • 나옥경 (경기대학교 응용통계학과)
  • Received : 2023.09.24
  • Accepted : 2023.10.24
  • Published : 2023.12.31

Abstract

In a piecewise linear trend model, the change points coincide with the mean change points of the first differenced time series. Therefore, by detecting the mean change points of the first differenced time series, one can estimate the change points of the piecewise linear trend model. In this paper, based on this fact, a method is proposed for detecting change points of the piecewise linear trend model using the simple moving average of the first differenced time series rather than estimates of the slope or residuals. Our Monte Carlo simulation experiments show that the proposed method performs well in estimating the number of change points not only when the error terms in the piecewise linear trend model are independent but also when they are serially correlated.

조각별 선형 추세 모형에서의 변화점은 1차 차분한 시계열의 평균 변화점과 일치한다. 그러므로 1차 차분한 시계열의 평균 변화점을 탐색하면 조각별 선형 추세 모형의 변화점을 추정할 수 있다. 본 논문에서는 이와 같은 사실에 근거하여 원 시계열이 아닌 1차 차분한 시계열의 단순이동평균을 이용하여 원 시계열의 기울기가 변하는 변화점을 탐색하는 방법을 제안하고, 이에 대한 모의실험을 수행하였다. 모의실험 결과 본 논문에서 제안한 방법은 오차항들이 서로 독립인 경우뿐만 아니라 오차항들 사이에 강한 양의 자기상관이 존재하는 경우에도 변화점의 개수를 잘 추정하는 것으로 나타났다.

Keywords

References

  1. Aue A and Horvath L (2013). Structural breaks in time series, ' Journal of Time Series Analysis, 34, 1-16. https://doi.org/10.1111/j.1467-9892.2012.00819.x
  2. Campra P and Morales M (2016). Trend analysis by a piecewise linear regression model applied to surface air temperatures in Southeastern Spain (1973-2014), Retrieved Oct. 18, 2023, [preprint], Available from: https://doi.org/10.5194/npg-2016-29.
  3. Deo CM (1972). Some limit theorems for maxima of absolute values of Gaussian sequences, Sankhya: The Indian Journal of Statistics, Series A, 34, 289-292.
  4. Deo CM (1975). Weak convergence of stochastic processes related to the absolute extremes of a gaussian sequence, Sankhya: The Indian Journal of Statistics, Series A, 37, 334-344.
  5. Eichinger B and Kirch C (2018). A MOSUM procedure for the estimation of multiple random change points, Bernoulli, 24, 526-564. https://doi.org/10.3150/16-BEJ887
  6. Fong Y, Huang Y, Gilbert PB, and Permar SR (2017). chngpt: Threshold regression model estimation and inference, BMC Bioinformatics, 18, 1-7, Available from: https://doi.org/10.1186/s12859-017-1863-x
  7. Jiang F, Zhao Z, and Shao X (2022). Modelling the COVID-19 infection trajectory: A piecewise linear quantile trend model, Journal of the Royal Statistical Society Series B: Statistical Methodology, 84, 1589-1607. https://doi.org/10.1111/rssb.12453
  8. Kim J, Oh H, and Cho H (2022). Moving sum procedure for change point detection under piecewise linearity, Retrieved Oct. 18, 2023, Available from: https://api.semanticscholar.org/CorpusID:251442756.
  9. Muggeo VMR (2003). Estimating regression models with unknown break-points, Statistics in Medicine, 22, 3055-3071. https://doi.org/10.1002/sim.1545
  10. Muggeo VMR (2008). Segmented: An R package to fit regression models with broken-line relationships, R News, 8, 20-25.
  11. Muggeo VMR (2016). Testing with a nuisance parameter present only under the alternative: A score-based approach with application to segmented modelling journal of statistical, Journal of Statistical Computation and Simulation, 86, 1-9. https://doi.org/10.1080/00949655.2016.1149855
  12. Muggeo VMR (2020). Selecting number of breakpoints in segmented regression: Implementation in the R package segmented, Retrieved Aug. 1, 2023, Available from: https://www.researchgate.net/publication/343737604.
  13. Open MET Data Portal (2023). Retrieved Oct. 18, 2023, Available from: https://data.kma.go.kr
  14. Park JS, Park CG, and Lee KE (2019). On study for change point regression problems using a difference-based regression model, Communications for Statistical Applications and Methods, 26, 539-556. https://doi.org/10.29220/CSAM.2019.26.6.539
  15. Tomal JH and Rahman H (2021). A Bayesian piecewise linear model for the detection of breakpoints in housing prices, METRON, 79, 361-381. https://doi.org/10.1007/s40300-021-00223-8
  16. Wang Y, Huang G, Yang J, Lai H, Liu S, Chen C, and Xu W (2020). Change point detection with mean shift based on AUC from symmetric sliding windows, Symmetry, 12, 1-17, Available from: https://doi.org/10.3390/sym 12040599
  17. Yau CY and Zhao Z (2016). Inference for multiple change points in time series via likelihood ratio scan statistics, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 78, 895-916. https://doi.org/10.1111/rssb.12139
  18. Zeileis A, Leisch F, Hornik K, and Kleiber C (2002). Strucchange: An R package for testing for structural change in linear regression models, Journal of Statistical Software, 7, 1-38. https://doi.org/10.18637/jss.v007.i02