과제정보
이 논문은 한국연구재단의 지원을 받아 수행된 기초연구 사업임 (NRF-2022R1F1A1066209).
참고문헌
- Baek C and Park M (2021). Sparse vector heterogeneous autoregressive modeling for realized volatility, Journal of the Korean Statistical Society, 50, 495-510. https://doi.org/10.1007/s42952-020-00090-5
- Cavalcante L, Bessa RJ, Reis M, and Browell J (2017). Lasso vector autoregression structures for very short-term wind power forecasting, Wind Energy, 20, 657-675. https://doi.org/10.1002/we.2029
- Corsi F (2009). A simple approximate long-memory model of realized volatility, Journal of Financial Econometrics, 7, 174-196. https://doi.org/10.1093/jjfinec/nbp001
- Cubadda G, Guardabascio B, and Hecq A (2017). A vector heterogeneous autoregressive index model for realized volatility measures, International Journal of Forecasting, 33, 337-344. https://doi.org/10.1016/j.ijforecast.2016.09.002
- Engle RF and Marcucci J (2006). A long-run pure variance common features model for the common volatilities of the Dow Jones, Journal of Econometrics, 132, 7-42. https://doi.org/10.1016/j.jeconom.2005.01.021
- Gao Z, Ma Y, Wang H, and Yao Q (2019). Banded spatio-temporal autoregressions, Journal of Econometrics, 208, 211-230. https://doi.org/10.1016/j.jeconom.2018.09.012
- Guo S, Wang Y, and Yao Q (2016). High-dimensional and banded vector autoregressions, Biometrika, 103, 889-903. https://doi.org/10.1093/biomet/asw046
- Hyndman RJ and Khandakar Y (2008). Automatic time series forecasting: The forecast package for R, Journal of Statistical Software, 27, 1-22. https://doi.org/10.18637/jss.v027.i03
- Lam C and Yao Q (2012). Factor modeling for high-dimensional time series: Inference for the number of factors, The Annals of Statistics, 40, 694-726. https://doi.org/10.1214/12-AOS970
- Lutkepohl H (2005). New Introduction to Multiple Time Series Analysis, Springer Science & Business Media, Berlin.
- Ray BK and Tsay RS (2000). Long-range dependence in daily stock volatilities, Journal of Business & Economic Statistics, 18, 254-262. https://doi.org/10.1080/07350015.2000.10524867
- Wang H, Luo X, and Ling L (2021). Semiparametric spatio-temporal models with unknown and banded autoregressive coefficient matrices, Mathematical Methods in the Applied Sciences, 30 December 2021, 1-31. https://doi.org/10.1002/mma.8053
- Zheng Y and Cheng G (2020). Finite-time analysis of vector autoregressive models under linear restrictions, Biometrika, 108, 469-489. https://doi.org/10.1093/biomet/asaa065