Acknowledgement
This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (No. 2023A-02-06-01-010).
References
- J. Cahn and J. Hilliard, Free energy of a non-uniform system, Chemistry and Physics, 28 (1958), 258-267.
- S. Lee, C. Lee, H. Lee, J. Kim, Comparison of different numerical schemes for the Cahn-Hilliard equation, Journal of the Korean Society for Industrial and Applied Mathematics, 17 (2013), 197-207. https://doi.org/10.12941/jksiam.2013.17.197
- S. Lee, J. Shin, Energy stable compact scheme for Cahn-Hilliard equation with periodic boundary condition, Computers & Mathematics with Applications, 77(1) (2019), 189-198. https://doi.org/10.1016/j.camwa.2018.09.021
- L. Cherfils, A. Miranville, S. Zelik, On a generalized Cahn-Hilliard equation with biological application, Discrete and Continuous Dynamical Systems-Series B, 19(7), (2014) 20130-2026. https://doi.org/10.3934/dcdsb.2014.19.2013
- P. Blair, An analysis of the fractional step method, Journal of Computational Physics 108(1) (1993), 51-58. https://doi.org/10.1006/jcph.1993.1162
- D. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS online proceedings library (OPL) 529 (1998), 39.
- X. Pan, K. Kim, C. Lee, J. Choi, A decoupled monolithic projection method for natural convection problems, Journal Computational Physics, 314 (2016), 160-166. https://doi.org/10.1016/j.jcp.2016.03.019
- X. Pan, K. Kim, C. Lee, J. Choi, Fully decoupled monolithic projection method for natural convection problems, Journal Computational Physics, 334 (2017), 582-606. https://doi.org/10.1016/j.jcp.2017.01.022