Acknowledgement
This work was supported by the National Natural Science Foundation of China (No.31672393); Chongqing Performance Incentive and Guide Special Projects (No.21529); Key R & D Project in Agriculture and Animal Husbandry of Rongchang (No.22544C); Special key project of technological innovation and application development in Chongqing, China (cstc2021 jscx-gksbX0008).
References
- Luigi-Sierra MG, Landi V, Guan D, et al. A genome-wide association analysis for body, udder, and leg conformation traits recorded in Murciano-Granadina goats. J Dairy Sci 2020;103:11605-17. https://doi.org/10.3168/jds.2020-18461
- Saleh AA, Rashad AMA, Hassanine NNAM, Sharaby MA, Zhao Y. Evaluation of morphological traits and physiological variables of several Chinese goat breeds and their crosses. Trop Anim Health Prod 2021;53:74. https://doi.org/10.1007/s11250-020-02549-3
- Islam R, Liu X, Gebreselassie G, Abied A, Ma Q, Ma Y. Genome-wide association analysis reveals the genetic locus for high reproduction trait in Chinese Arbas Cashmere goat. Genes Genomics 2020;42:893-9. https://doi.org/10.1007/s13258-020-00937-5
- Abdoli R, Mirhoseini SZ, Hossein-Zadeh NG, et al. Genome-wide association study of first lambing age and lambing interval in sheep. Small Rumin Res 2019;178:43-5. https://doi.org/10.1016/j.smallrumres.2019.07.014
- Peng WF, Xu SS, Ren X, et al. A genome-wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries). Anim Genet 2017;48:570-9. https://doi.org/ 10.1111/age.12575
- Ghaffarilaleh V, Javanmard A, Saberivand A, et al. Variation and frequency of supernumerary teats, litter size, histological features and the fibroblast growth factor 2 (FGF-2) gene expression pattern in goats. Theriogenology 2022;179:141-8. https://doi.org/doi:10.1016/j.theriogenology.2021.11.016
- Martin P, Palhiere I, Tosser-Klopp G, Rupp R. Heritability and genome-wide association mapping for supernumerary teats in French Alpine and Saanen dairy goats. J Dairy Sci 2016;99:8891-900. https://doi.org/10.3168/jds.2016-11210
- Nazari-Ghadikolaei A, Mehrabani-Yeganeh H, MiareiAashtiani SR, Staiger EA, Rashidi A, Huson HJ. Genomewide association studies identify candidate genes for coat color and mohair traits in the Iranian Markhoz goat. Front Genet 2018;9:105. https://doi.org/10.3389/fgene.2018.00105
- Jara E, Penagaricano F, Armstrong E, Ciappesoni G, Iriarte A, Navajas EA. Revealing the genetic basis of eyelid pigmentation in Hereford cattle. Anim Sci 2022;100:skac110. https://doi.org/10.1093/jas/skac110
- Garcia-Gamez E, Reverter A, Whan V, et al. Using regulatory and epistatic networks to extend the findings of a genome scan: identifying the gene drivers of pigmentation in merino sheep. PLoS One 2011;6:e21158. https://doi.org/10.1371/journal.pone.0021158
- Wang FH, Zhang L, Gong G, et al. Genome-wide association study of fleece traits in Inner Mongolia Cashmere goats. Anim Genet 2021;52:375-9. https://doi.org/10.1111/age.13053
- Zhao BR, Luo HP, Huang XX, et al. Integration of a single-step genome-wide association study with a multi-tissue transcriptome analysis provides novel insights into the genetic basis of wool and weight traits in sheep. Genet Sel Evol 2021;53:56. https://doi.org/10.1186/s12711-021-00649-8
- Reber I, Keller I, Becker D, Flury C, Welle M, Drogemuller C. Wattles in goats are associated with the FMN1/GREM1 region on chromosome 10. Anim Genet 2015;46:316-20. https://doi.org/10.1111/age.12279
- Tosser-Klopp G, Bardou P, Bouchez O, et al. Design and characterization of a 52K SNP chip for goats. PLoS One 2014;9:e86227. https://doi.org/10.1371/journal.pone.0086227
- Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75. https://doi.org/10.1086/519795
- Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: An R library for genome- wide association analysis. Bioinformatics 2007;23:1294-6. https://doi.org/10.1093/bioinformatics/btm108
- Alexander DH, Novembre, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 2009;9:1655-64. https://doi.org/10.1101/gr.094052.109
- Rout PK, Verma M. Post translational modifications of milk proteins in geographically diverse goat breeds. Sci Rep 2021;11:5619. https://doi.org/10.1038/s41598-021-85094-9
- Lan XY, Chen H, Pan CY, et al. Relationship between polymorphisms of CSN3, CSN1S2 and β-lg genes and litter sizes of Xinong Saanen dairy goat. Scientia Agricultura Sinica 2005;38:2333-8. https://doi.org/10.3321/j.issn:0578-1752.2005.11.026
- Lan R, Zhu L, Yao XR, et al. Genome-wide association study of lambing number in goat. Acta Vet Zootec Sin 2015;46:549-54. https://doi.org/10.11843/j.issn.0366-6964.2015.04.006
- Islam R, Li Y, Liu X, et al. Genome-wide runs of homozygosity, effective population size, and detection of positive selection signatures in six Chinese goat breeds. Genes (Basel) 2019;10:938. https://doi.org/10.3390/genes10110938
- Tao L. Genome-wide screening of candidate genes for litter size in Yunshang Black goats [Dissertation]. Beijing, China: Chinese Academy of Agricultural Sciences; 2021.
- Xin D, Bai Y, Bi Y, et al. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. J Zhejiang Univ Sci B 2021;22:757-66. https://doi.org/10.1631/jzus.B2100079
- Hardwick LJA, Phythian CJ, Fowden AL, Hughes K. Size of supernumerary teats in sheep correlates with complexity of the anatomy and microenvironment. J Anat 2020;236:954-62. https://doi.org/10.1111/joa.13149
- Tao L, He XY, Wang FY, et al. Identification of genes associated with litter size combining genomic approaches in Luzhong mutton sheep. Anim Genet 2021;52:545-9. https://doi.org/10.1111/age.13078
- Subkhangulova A, Malik AR, Hermey G, et al. SORCS1 and SORCS3 control energy balance and orexigenic peptide production. EMBO Rep 2018;19:e44810. https://doi.org/10.15252/embr.201744810
- Marchesi JAP, Ono RK, Cantao ME, et al. Exploring the genetic architecture of feed efficiency traits in chickens. Sci Rep 2021;11:4622. https://doi.org/10.1038/s41598-021-84125-9
- Henkel J, Dubacher A, Bangerter E, et al. Introgression of ASIP and TYRP1 alleles explains coat color variation in valais goats. J Hered 2021;112:452-7. https://doi.org/10.1093/jhered/sab024
- Wang XW, Fan Y, Ma XM, et al. Quantitative analysis of mRNA expression of Tan sheep coat color candidate genes MC1R and TCF25. Acta Agric Zhejiangensis 2020;32:1351-6. https://doi.org/10.3969/j.issn.1004-1524.2020.08.03
- Yang KX, Zhou H, Ding JM, et al. Copy number variation in HOXB7 and HOXB8 involves in the formation of beard trait in chickens. Anim Genet 2020;51:958-63. https://doi.org/10.1111/age.13011
- Zuniga-Garcia S, Meza-Herrera CA, Mendoza-Cortina A, et al. Does size matters? Relationships among social dominance and some morphometric traits upon out-of-season reproductive outcomes in anestrus dairy goats treated with P4 + eCG. Biology (Basel) 2020;9:354. https://doi.org/10.3390/biology9110354
- Ren H, Wang G, Jiang J, et al. Comparative transcriptome and histological analyses provide insights into the prenatal skin pigmentation in goat (Capra hircus). Physiol Genomics 2017;49:703-11. https://doi.org/10.1152/physiolgenomics.00072.2017
- Penagaricano F, Zorrilla P, Naya H, Robello C, Urioste JI. Gene expression analysis identifies new candidate genes associated with the development of black skin spots in Corriedale sheep. J Appl Genet 2012;53:99-106. https://doi.org/10.1007/s13353-011-0066-9